Abstract

Thin monocrystalline silicon wafers are employed for the manufacturing of solar cells with high conversion efficiency. Micro-cracks can be induced by the wafer cutting process, leading to breakage of the fragile wafers. High-frequency guided waves allow for the monitoring of wafers and detection and characterization of surface defects. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the guided wave mode and propagation direction relative to the crystal orientation. Selective excitation of the first antisymmetric A0 wave mode at 5 MHz center frequency was achieved experimentally using a custom-made wedge transducer. Strong wave pulses with limited beam skewing and widening were measured using noncontact laser interferometer measurements. This allowed the accurate characterization of the Lamb wave propagation and scattering at small artificial surface defects with a size of less than 100 µm. The surface extent of the defects of varying size was characterized using an optical microscope. The scattered guided wave field was evaluated, and characteristic parameters were extracted and correlated with the defect size, allowing in principle detection of small defects. Further investigations are required to explain the systematic asymmetry of the guided wave field in the vicinity of the indents.

References

1.
Luque
,
A.
, and
Hegedus
,
S.
,
2011
,
Handbook of Photovoltaic Science and Engineering
,
Wiley
,
New York
.
2.
Papargyri
,
L.
,
Theristis
,
M.
,
Kubicek
,
B.
,
Krametz
,
T.
,
Mayr
,
C.
,
Papanastasiou
,
P.
, and
Georghiou
,
G. E.
,
2020
, “
Modelling and Experimental Investigations of Microcracks in Crystalline Silicon Photovoltaics: A Review
,”
Renewable Energy
,
145
, pp.
2387
2408
.
3.
Abdelhamid
,
M.
,
Singh
,
R.
, and
Omar
,
M.
,
2014
, “
Review of Microcrack Detection Techniques for Silicon Solar Cells
,”
IEEE J. Photovoltaics
,
4
(
1
), pp.
514
524
.
4.
Israil
,
M.
,
Ghani
,
A.
, and
Kerm
,
Y.
,
2014
, “
Non-Destructive Microcracks Detection Techniques in Silicon Solar Cell
,”
Phys. Sci. Int. J.
,
4
(
8
), pp.
1073
1087
.
5.
Belyaev
,
A.
,
Polupan
,
O.
,
Dallas
,
W.
,
Ostapenko
,
S.
,
Hess
,
D.
, and
Wohlgemuth
,
J.
,
2006
, “
Crack Detection and Analyses Using Resonance Ultrasonic Vibrations in Full-Size Crystalline Silicon Wafers
,”
Appl. Phys. Lett.
,
88
(
11
), pp.
111907
111909
.
6.
Rose
,
J. L.
,
2002
, “
Standing on the Shoulders of Giants: An Example of Guided Wave Inspection
,”
Mat. Eval.
,
60
(
1
), pp.
53
59
.
7.
Masserey
,
B.
, and
Fromme
,
P.
,
2017
, “
Analysis of High Frequency Guided Wave Scattering at a Fastener Hole With a View to Fatigue Crack Detection
,”
Ultrasonics
,
76
, pp.
78
86
.
8.
Masserey
,
B.
, and
Fromme
,
P.
,
2015
, “
In-Situ Monitoring of Fatigue Crack Growth Using High Frequency Guided Waves
,”
NDT&E Int.
,
71
, pp.
1
7
.
9.
Shen
,
Y.
,
Wang
,
J.
, and
Xu
,
W.
,
2018
, “
Nonlinear Features of Guided Wave Scattering From Rivet Hole Nucleated Fatigue Cracks Considering the Rough Contact Surface Condition
,”
Smart Mater. Struct.
,
27
(
10
), pp.
1
15
.
10.
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2016
, “
Complex Modes Expansion With Vector Projection Using Power Flow to Simulate Lamb Waves Scattering From Horizontal Cracks and Disbonds
,”
J. Acoust. Soc. Am.
,
140
(
3
), pp.
2123
2133
.
11.
Leleux
,
A.
,
Micheau
,
P.
, and
Castaings
,
M.
,
2013
, “
Long Range Detection of Defects in Composite Plates Using Lamb Waves Generated and Detected by Ultrasonic Phased Array Probes
,”
J. Nondestruct. Eval.
,
32
(
2
), pp.
200
214
.
12.
Chapuis
,
B.
,
Terrien
,
N.
, and
Royer
,
D.
,
2010
, “
Excitation and Focusing of Lamb Waves in a Multilayered Anisotropic Plate
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
198
203
.
13.
Murat
,
B. I. S.
,
Khalili
,
P.
, and
Fromme
,
P.
,
2016
, “
Scattering of Guided Waves at Delaminations in Composite Plates
,”
J. Acoust. Soc. Am.
,
139
(
6
), pp.
3044
3052
.
14.
Potel
,
C.
,
Baly
,
S.
,
de Belleval
,
J.-F.
,
Lowe
,
M.
, and
Gatignol
,
P.
,
2005
, “
Deviation of a Monochromatic Lamb Wave Beam in Anisotropic Multilayered Media: Asymptotic Analysis, Numerical and Experimental Results
,”
IEEE Trans. Ultrason. Ferroel. Freq. Contr.
,
52
(
6
), pp.
987
1001
.
15.
Veidt
,
M.
, and
Sachse
,
W.
,
1994
, “
Ultrasonic Point-Source/Point-Receiver Measurements in Thin Specimens
,”
J. Acoust. Soc. Am.
,
96
(
4
), pp.
2318
2326
.
16.
Maris
,
H. J.
,
1971
, “
Enhancement of Heat Pulses in Crystals due to Elastic Anisotropy
,”
J. Acoust. Soc. Am.
,
50
(
3B
), pp.
812
818
.
17.
Kim
,
K. Y.
,
Bretz
,
K. C.
,
Every
,
A. G.
, and
Sachse
,
W.
,
1996
, “
Ultrasonic Imaging of the Group Velocity Surface About the Cubic Axis in Silicon
,”
J. Appl. Phys.
,
79
(
4
), pp.
1857
1863
.
18.
Audoin
,
B.
,
Bescond
,
C.
, and
Deschamps
,
M.
,
1996
, “
Measurement of Stiffness Coefficients of Anisotropic Materials From Pointlike Generation and Detection of Acoustic Waves
,”
J. Appl. Phys.
,
80
(
7
), pp.
3760
3771
.
19.
Prada
,
C.
,
Clorennec
,
D.
,
Murray
,
T. W.
, and
Royer
,
D.
,
2009
, “
Influence of the Anisotropy on Zero-Group Velocity Lamb Modes
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
620
625
.
20.
Youngjae
,
M.
,
Gyeongwon
,
Y.
,
Kyung-Min
,
K.
,
Yuji
,
R.
, and
Young
,
K.
,
2016
, “
Comparison of Slowness Profiles of Lamb Waves With Elastic Moduli and Crystal Structure in Single Crystalline Silicon Wafers
,”
J. Korean Soc. Nondestruc. Test.
,
36
(
1
), pp.
1
8
.
21.
Fromme
,
P.
,
Pizzolato
,
M.
,
Robyr
,
J.-L.
, and
Masserey
,
B.
,
2018
, “
Lamb Wave Propagation in Monocrystalline Silicon Wafers
,”
J. Acoust. Soc. Am.
,
143
(
1
), pp.
287
295
.
22.
Pizzolato
,
M.
,
Masserey
,
B.
,
Robyr
,
J.-L.
, and
Fromme
,
P.
,
2018
, “
Guided Ultrasonic Wave Beam Skew in Silicon Wafers
,”
AIP Conf. Proc.
,
1949
, p.
090005
.
23.
Song
,
M.-K.
, and
Jhang
,
K.-Y.
,
2013
, “
Crack Detection in Single-Crystalline Silicon Wafer Using Laser Generated Lamb Wave
,”
Adv. Mater. Sci. Eng.
,
2013
, p.
950791
.
24.
Chakrapani
,
S. K.
,
Padiyar
,
M. J.
, and
Balasubramaniam
,
K.
,
2012
, “
Crack Detection in Full Size Cz-Silicon Wafers Using Lamb Wave Air Coupled Ultrasonic Testing (LAC-UT)
,”
J. Nondestruct. Eval.
,
31
(
1
), pp.
46
55
.
25.
Li
,
Y.
,
He
,
C.
,
Lyu
,
Y.
,
Song
,
G.
, and
Wu
,
B.
,
2019
, “
Crack Detection in Monocrystalline Silicon Solar Cells Using Air-Coupled Ultrasonic Lamb Waves
,”
NDT&E Int.
,
102
, pp.
129
136
.
26.
Simon
,
M.
,
Masserey
,
B.
,
Robyr
,
J.-L.
, and
Fromme
,
P.
,
2019
, “
High Frequency Guided Wave Defect Imaging in Monocrystalline Silicon Wafers
,”
Proc. SPIE
,
10972
, p.
1097206
.
27.
Lauper
,
M.
,
Fromme
,
P.
,
Robyr
,
J.-L.
, and
Masserey
,
B.
,
2018
, “
Silicon Wafer Defect Detection Using High Frequency Guided Waves
,”
Proc. SPIE
,
10600
, p.
106000G
.
28.
Masserey
,
B.
,
Simon
,
M.
,
Robyr
,
J.-L.
, and
Fromme
,
P.
,
2019
, “
Defect Detection in Monocrystalline Silicon Wafers Using High Frequency Guided Waves
,”
AIP Conf. Proc.
,
2102
, p.
020013
.
29.
Pavlakovic
,
B.
,
Lowe
,
M. J. S.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1997
, “Disperse: A General Purpose Program for Creating Dispersion Curves,”
Proc. QNDE 16
,
D. O.
Thompson
, and
D.
Chimenti
, eds.,
Plenum
,
New York
, pp.
185
192
.
You do not currently have access to this content.