Abstract

Accelerometers, used as vibration pickups in machine health monitoring systems, need physical connection to the machine tool through cables, complicating physical systems. A non-contact laser based vibration sensor has been developed and used for bearing health monitoring in this article. The vibration data have been acquired under speed and load variation. Hilbert transform (HT) has been applied for denoising the vibration signal. An extraction of condition monitoring indicators from both raw and envelope signals has been made, and the dimensionality of these extracted indicators was deducted with principal component analysis (PCA). Sequential floating forward selection (SFFS) method has been implemented for ranking the selected indicators in order of significance for reduction in the input vector size and for finalizing the most optimal indicator set. Finally, the selected indicators are passed to k-nearest neighbor (kNN) and weighted kNN (WkNN) for diagnosing the bearing defects. The comparative analysis of the effectiveness of kNN and WkNN has been executed. It is evident from the experimental results that the vibration signals obtained from developed non-contact sensor compare adequately with the accelerometer data obtained under similar conditions. The performance of WkNN has been found to be slower compared to kNN. The proposed fault detection methodology compares very well with the other reported methods in the literature. The non-contact fault detection methodology has an enormous potential for automatic recognition of defects in the machine, which can provide early signals to avoid catastrophic failure and unplanned equipment shutdowns.

References

1.
Shi
,
D.
,
Wang
,
W.
, and
Qu
,
L.
,
2004
, “
Defect Detection for Bearings Using Envelope Spectra of Wavelet Transform
,”
ASME J. Vib. Acoust.
,
126
(
4
), pp.
567
573
. 10.1115/1.1804995
2.
Goyal
,
D.
, and
Pabla
,
B.
,
2016
, “
The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
585
594
. 10.1007/s11831-015-9145-0
3.
Goyal
,
D.
,
Dhami
,
S.
, and
Pabla
,
B.
,
2020
, “
Non-Contact Fault Diagnosis of Bearings in Machine Learning Environment
,”
IEEE Sens. J.
,
20
(
9
), pp.
4816
4823
. 10.1109/JSEN.2020.2964633
4.
Goyal
,
D.
,
Choudhary
,
A.
,
Pabla
,
B.
, and
Dhami
,
S.
,
2020
, “
Support Vector Machines Based Non-Contact Fault Diagnosis System for Bearings
,”
J. Intell. Manufact.
,
31
(
5
), pp.
1275
1289
. 10.1007/s10845-019-01511-x
5.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
. 10.1016/j.eswa.2010.07.119
6.
Van Hecke
,
B.
,
He
,
D.
, and
Qu
,
Y.
,
2014
, “
On the Use of Spectral Averaging of Acoustic Emission Signals for Bearing Fault Diagnostics
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061009
. 10.1115/1.4028322
7.
Widodo
,
A.
,
Yang
,
B.-S.
,
Kim
,
E. Y.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2009
, “
Fault Diagnosis of Low Speed Bearing Based on Acoustic Emission Signal and Multi-Class Relevance Vector Machine
,”
Nondestruct. Testing Eval.
,
24
(
4
), pp.
313
328
. 10.1080/10589750802378974
8.
Waqar
,
T.
, and
Demetgul
,
M.
,
2016
, “
Thermal Analysis Mlp Neural Network Based Fault Diagnosis on Worm Gears
,”
Measurement
,
86
, pp.
56
66
. 10.1016/j.measurement.2016.02.024
9.
Younus
,
A. M.
,
Widodo
,
A.
, and
Yang
,
B.-S.
,
2010
, “
Evaluation of Thermography Image Data for Machine Fault Diagnosis
,”
Nondestruct. Testing Eval.
,
25
(
3
), pp.
231
247
. 10.1080/10589750903473617
10.
Vass
,
J.
,
Šmíd
,
R.
,
Randall
,
R.
,
Sovka
,
P.
,
Cristalli
,
C.
, and
Torcianti
,
B.
,
2008
, “
Avoidance of Speckle Noise in Laser Vibrometry by the Use of Kurtosis Ratio: Application to Mechanical Fault Diagnostics
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
647
671
. 10.1016/j.ymssp.2007.08.008
11.
He
,
M.
, and
He
,
D.
,
2017
, “
Deep Learning Based Approach for Bearing Fault Diagnosis
,”
IEEE. Trans. Ind. Appl.
,
53
(
3
), pp.
3057
3065
. 10.1109/TIA.2017.2661250
12.
Elbouchikhi
,
E.
,
Choqueuse
,
V.
,
Amirat
,
Y.
,
Benbouzid
,
M. E. H.
, and
Turri
,
S.
,
2017
, “
An Efficient Hilbert–Huang Transform-Based Bearing Faults Detection in Induction Machines
,”
IEEE Trans. Energy Conversion
,
32
(
2
), pp.
401
413
. 10.1109/TEC.2017.2661541
13.
Yu
,
D.
,
Cheng
,
J.
, and
Yang
,
Y.
,
2005
, “
Application of Emd Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
259
270
. 10.1016/S0888-3270(03)00099-2
14.
Jolliffe
,
I.
,
2011
,
Principal Component Analysis
,
Springer
,
New York
.
15.
Malhi
,
A.
, and
Gao
,
R. X.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
(
6
), pp.
1517
1525
. 10.1109/TIM.2004.834070
16.
Liu
,
Z.
,
Zhao
,
X.
,
Zuo
,
M. J.
, and
Xu
,
H.
,
2014
, “
Feature Selection for Fault Level Diagnosis of Planetary Gearboxes
,”
Adv. Data Anal. Classif.
,
8
(
4
), pp.
377
401
. 10.1007/s11634-014-0168-4
17.
Samanta
,
B.
,
2004
, “
Gear Fault Detection Using Artificial Neural Networks and Support Vector Machines With Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
625
644
. 10.1016/S0888-3270(03)00020-7
18.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
. 10.1016/j.ymssp.2018.02.016
19.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2009
, “
A Combination of WkNN to Fault Diagnosis of Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
064502
. 10.1115/1.4000478
20.
Nguyen
,
P. H.
, and
Kim
,
J.-M.
,
2015
, “
Multifault Diagnosis of Rolling Element Bearings Using a Wavelet Kurtogram and Vector Median-Based Feature Analysis
,”
Shock Vib.
,
2015
. 10.1155/2015/320508
21.
Kanai
,
R.
,
Desavale
,
R.
, and
Chavan
,
S.
,
2016
, “
Experimental-Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
. 10.1115/1.4032525
22.
Jung
,
U.
, and
Koh
,
B.-H.
,
2015
, “
Wavelet Energy-Based Visualization and Classification of High-Dimensional Signal for Bearing Fault Detection
,”
Knowl. Inform. Syst.
,
44
(
1
), pp.
197
215
. 10.1007/s10115-014-0761-z
23.
Safizadeh
,
M.
, and
Latifi
,
S.
,
2014
, “
Using Multi-Sensor Data Fusion for Vibration Fault Diagnosis of Rolling Element Bearings by Accelerometer and Load Cell
,”
Inform. Fusion
,
18
, pp.
1
8
. 10.1016/j.inffus.2013.10.002
24.
Yaqub
,
M. F.
,
Gondal
,
I.
, and
Kamruzzaman
,
J.
,
2011
, “
Inchoate Fault Detection Framework: Adaptive Selection of Wavelet Nodes and Cumulant Orders
,”
IEEE Trans. Instrument. Measure.
,
61
(
3
), pp.
685
695
. 10.1109/TIM.2011.2172112
25.
Jia
,
F.
,
Lei
,
Y.
,
Lin
,
J.
,
Zhou
,
X.
, and
Lu
,
N.
,
2016
, “
Deep Neural Networks: A Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery With Massive Data
,”
Mech. Syst. Signal Process.
,
72
, pp.
303
315
. 10.1016/j.ymssp.2015.10.025
26.
Dou
,
D.
, and
Zhou
,
S.
,
2016
, “
Comparison of Four Direct Classification Methods for Intelligent Fault Diagnosis of Rotating Machinery
,”
Appl. Soft. Comput.
,
46
, pp.
459
468
. 10.1016/j.asoc.2016.05.015
27.
Haykin
,
S.
,
1994
,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
28.
Cover
,
T.
, and
Hart
,
P.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inform. Theory
,
13
(
1
), pp.
21
27
. 10.1109/TIT.1967.1053964
29.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2012
,
Pattern Classification
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Bailey
,
T.
, and
Jain
,
A.
,
1978
, “
A Note on Distance-Weighted K-Nearest Neighbor Rules
,”
IEEE Trans. Syst., Man, Cyber.
,
8
(
4
), pp.
311
313
. 10.1109/tsmc.1978.4309958
31.
Goyal
,
D.
,
Vanraj, Pabla
,
B.
, and
Dhami
,
S.
,
2019
, “
Non-Contact Sensor Placement Strategy for Condition Monitoring of Rotating Machine-Elements
,”
Eng. Sci. Tech., Int. J.
,
22
(
2
), pp.
489
501
. 10.1016/j.jestch.2018.12.006
32.
Rai
,
V.
, and
Mohanty
,
A.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2607
2615
. 10.1016/j.ymssp.2006.12.004
33.
Pudil
,
P.
,
Novovičová
,
J.
, and
Kittler
,
J.
,
1994
, “
Floating Search Methods in Feature Selection
,”
Pattern Recognition Lett.
,
15
(
11
), pp.
1119
1125
. 10.1016/0167-8655(94)90127-9
34.
Reyes
,
O.
,
Morell
,
C.
, and
Ventura
,
S.
,
2014
, “
Evolutionary Feature Weighting to Improve the Performance of Multi-Label Lazy Algorithms
,”
Int. Comput. Aided Eng.
,
21
(
4
), pp.
339
354
. 10.3233/ICA-140468
35.
Soylemezoglu
,
A.
,
Jagannathan
,
S.
, and
Saygin
,
C.
,
2010
, “
Mahalanobis Taguchi System (MTS) as a Prognostics Tool for Rolling Element Bearing Failures
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051014
. 10.1115/1.4002545
36.
Kumar
,
S.
,
Chow
,
T. W.
, and
Pecht
,
M.
,
2010
, “
Approach to Fault Identification for Electronic Products Using Mahalanobis Distance
,”
IEEE Trans. Instrument. Measure.
,
59
(
8
), pp.
2055
2064
. 10.1109/TIM.2009.2032884
37.
Jain
,
A. K.
,
Duin
,
R. P. W.
, and
Mao
,
J.
,
2000
, “
Statistical Pattern Rcognition: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
1
), pp.
4
37
. 10.1109/34.824819
38.
Linessio
,
R. P.
,
de Morais Sousa
,
K.
,
da Silva
,
T.
,
Bavastri
,
C. A.
,
da Costa Antunes
,
P. F.
, and
da Silva
,
J. C. C.
,
2016
, “
Induction Motors Vibration Monitoring Using a Biaxial Optical Fiber Accelerometer
,”
IEEE Sens. J.
,
16
(
22
), pp.
8075
8082
. 10.1109/JSEN.2016.2604850
You do not currently have access to this content.