Abstract
The use of eddy current (EC) arrays to detect damage in sandwich panels, such as disbonding of the carbon fiber reinforced polymer (CFRP) face-sheet to the core, is investigated. It is shown that the array is very sensitive to slight core crush and can readily find small dents and disbonds. At the same time, the eddy current array can look much deeper into the honeycomb to detect defects such as tears. The phase map of the EC signal can be used in some cases to distinguish between different types of damage. EC arrays offer the ability to rapidly scan large areas of CFRP panels.
References
1.
Hsu
, D.K.
, 2008
, “Nondestructive Inspection of Composite Structures: Methods and Practice
,” 17th World Conference on Nondestructive Testing
, Shanghai, China
, Oct. 25–28
.2.
Kim
, S. J.
, 2018
, “Numerical Simulations of Tap Test on Composite Structures
,” Int. J. Acoust. Vib.
, 23
(2
), pp. 195
–202
. 10.20855/ijav.2018.23.213813.
Kim
, S. J.
, and Kim
, T.-U.
, 2016
, “Damage Detection in Sandwich Structure Using Tap Test
,” Proceedings of the INTER-NOISE 2016—45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future
, Hamburg, Germany
, Aug. 21–24
, pp. 4299
–4303
.4.
Kim
, S. J.
, 2015
, “Damage Detection in Composite Under In-Plane Load Using Tap Test
,” J. Mech. Sci. Technol.
, 29
(1
), pp. 199
–207
.10.1007/s12206-014-1103-55.
Kim
, S. J.
, 2008
, “Damage Detection in Composite Laminates Using Coin-Tap Method
,” Proceedings—European Conference on Noise Control
, Paris, France
, June 29–July 4
, pp. 405
–409
.6.
Hsu
, D. K.
, Peters
, J. J.
, and Barnard
, D. J.
, 2004
, “Development of Fieldable Systems for Inspecting Aircraft Composite Structures
,” Key Eng. Mater.
, 270–273
(III
), pp. 1845
–1851
. 10.4028/www.scientific.net/KEM.270-273.18457.
Falk
, J. P.
, Steck
, J. E.
, and Smith
, B. L.
, 2003
, “A Nondestructive Testing Technique for Composite Panels Using Tap Test Acoustic Signals and Artificial Neural Networks
,” Int. J. Smart Eng. Syst. Des.
, 5
(4
), pp. 491
–506
. 10.1080/102558103904453648.
Xu
, Z.
, Li
, Y.
, Zhao
, S.
, Ma
, A.
, Qiao
, L.
, and Wang
, L.
, 2014
, “The Applied of Self-Organizing Clustering Analysis on Coin-Tap Test System of Airplane Composite Structure
,” Proceedings of 2014 Prognostics and System Health. Management Conference (PHM-2014 Hunan)
, Zhangjiajie, China
, Aug. 24–27
, pp. 360
–363
.9.
Federal Aviation Administration
, 2003
, “Guidelines for Analysis, Testing, and Nondestructive Inspection of Impact-Damaged Composite Sandwich Structures
,” Ar 02-121
.10.
Schaal
, C.
, and Mal
, A.
, 2017
, “Core-Skin Disbond Detection in a Composite Sandwich Panel Using Guided Ultrasonic Waves
,” ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
, 1
(1
), p. 011006
.10.1115/1.403754411.
Tiwari
, K. A.
, and Raisutis
, R.
, 2018
, “Identification and Characterization of Defects in Glass Fiber Reinforced Plastic by Refining the Guided Lamb Waves
,” Materials (Basel)
, 11
(7
), p. 1173
. 10.3390/ma1107117312.
Panda
, R. S.
, Rajagopal
, P.
, and Balasubramaniam
, K.
, 2018
, “Rapid Guided Wave Inspection of Complex Stiffened Composite Structural Components Using Non-Contact Air-Coupled Ultrasound
,” Compos. Struct.
, 206
, pp. 247
–260
. 10.1016/j.compstruct.2018.08.02413.
Tiwari
, K. A.
, and Raisutis
, R.
, 2018
, “Post-Processing of Ultrasonic Signals for the Analysis of Defects in Wind Turbine Blade Using Guided Waves
,” J. Strain Anal. Eng. Des.
, 53
(8
), pp. 546
–555
. 10.1177/030932471877266814.
Zhang
, K.
, and Zhou
, Z.
, 2018
, “Quantitative Characterization of Disbonds in Multilayered Bonded Composites Using Laser Ultrasonic Guided Waves
,” NDT&E Int.
, 97
, pp. 42
–50
. 10.1016/j.ndteint.2018.03.00615.
Michalcová
, L.
, Rechcígel
, L.
, Bělský
, P.
, and Kucharský
, P.
, 2018
, “Fatigue Disbonding Analysis of Wide Composite Panels by Means of Lamb Waves
,” Proceedings of the SPIE—International Society for Optical Engineering, No. 10599
.16.
Zhang
, K.
, Li
, S.
, and Zhou
, Z.
, 2018
, “Detection of Disbonds in Multi-Layer Bonded Structures Using the Laser Ultrasonic Pulse-Echo Mode
,” Ultrasonics
, 94
, pp. 411
–418
. 10.1016/j.ultras.2018.06.00517.
Fromme
, P.
, Reymondin
, J.-P.
, and Masserey
, B.
, 2017
, “High Frequency Guided Waves for Disbond Detection in Multi-Layered Structures
,” Acta Acust. Acust.
, 103
(6
), pp. 932
–940
. 10.3813/AAA.91912218.
Fiesler Saxena
, I.
, Guzman
, N.
, Hui
, K.
, and Mal
, A. K.
, 2017
, “Disbond Detection in a Composite Honeycomb Structure of an Aircraft Vertical Stabilizer by Fiber Bragg Gratings Detecting Guided Ultrasound Waves
,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, 231
(16
), pp. 3001
–3010
.10.1177/095440621771857119.
Garnier
, C.
, Pastor
, M. L.
, Eyma
, F.
, and Lorrain
, B.
, 2011
, “The Detection of Aeronautical Defects In Situ on Composite Structures Using Non Destructive Testing
,” Compos. Struct.
, 93
(5
), pp. 1328
–1336
.10.1016/j.compstruct.2010.10.01720.
Yang
, R.
, and He
, Y.
, 2016
, “Optically and Non-Optically Excited Thermography for Composites: A Review
,” Infrared Phys. Technol.
, 75
, pp. 26
–50
. 10.1016/j.infrared.2015.12.02621.
Duan
, Y.
, Zhang
, H.
, Maldague
, X. P. V.
, Ibarra-Castanedo
, C.
, Servais
, P.
, Genest
, M.
, Sfarra
, S.
, and Meng
, J.
, 2019
, “Reliability Assessment of Pulsed Thermography and Ultrasonic Testing for Impact Damage of CFRP Panels
,” NDT&E Int.
, 102
, pp. 77
–83
. 10.1016/j.ndteint.2018.11.01022.
Strugala
, G.
, Klugmann
, M.
, Landowski
, M.
, Szkodo
, M.
, and Mikielewicz
, D.
, 2018
, “A Universal NDT Method for Examination of Low Energy Impact Damage in CFRP With the Use of TLC Film
,” Nondestr. Test. Eval.
, 33
(3
), pp. 315
–328
.10.1080/10589759.2018.142832323.
Pieczonka
, L.
, Aymerich
, F.
, and Staszewski
, W. J.
, 2014
, “Impact Damage Detection in Light Composite Sandwich Panels
,” Procedia Eng.
, 88
, pp. 216
–221
. 10.1016/j.proeng.2014.11.14724.
Klepka
, A.
, Staszewski
, W. J.
, Di Maio
, D.
, and Scarpa
, F.
, 2013
, “Impact Damage Detection in Composite Chiral Sandwich Panels Using Nonlinear Vibro-Acoustic Modulations
,” Smart Mater. Struct.
, 22
(8
), p. 084011
.10.1088/0964-1726/22/8/08401125.
He
, Y.
, Tian
, G.
, Pan
, M.
, and Chen
, D.
, 2014
, “Non-Destructive Testing of Low-Energy Impact in CFRP Laminates and Interior Defects in Honeycomb Sandwich Using Scanning Pulsed Eddy Current
,” Composites Part B
, 59
, pp. 196
–203
. 10.1016/j.compositesb.2013.12.00526.
Reyno
, T.
, Underhill
, P.
, Krause
, T.
, Marsden
, C.
, and Wowk
, D.
, 2017
, “Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich
,” Sensors
, 17
(9
), pp. 2114
–2125
. 10.3390/s1709211427.
Relinger
, T.
, 2019
, “Detection of Low-Velocity Impact Damage in Carbon Fiber Sandwich Panels Using Infrared Thermography
,” M.Sc. thesis
, Royal Military College of Canada
, Kingston
.28.
Ibarra-Castanedo
, C.
, Piau
, J.-M.
, Guilbert
, S.
, Avdelidis
, N. P.
, Genest
, M.
, Bendada
, A.
, and Maldague
, X. P. V.
, 2009
, “Comparative Study of Active Thermography Techniques for the Nondestructive Evaluation of Honeycomb Structures
,” Res. Nondestr. Eval.
, 20
(1
), pp. 1
–31
. 10.1080/0934984080236661729.
Krause
, T. W.
, and Underhill
, P. R.
, 2019
, “Selecting the Correct Electromagnetic Inspection Technology
,” Adv. Mater. Lett.
, 10
(7
), pp. 441
–448
.10.5185/amlett.2019.226230.
Huang
, C.
, and Wu
, X.
, 2015
, “An Improved Ferromagnetic Material Pulsed Eddy Current Testing Signal Processing Method Based on Numerical Cumulative Integration
,” NDT&E Int.
, 69
, pp. 35
–39
. 10.1016/j.ndteint.2014.09.006Copyright © 2020 by ASME
You do not currently have access to this content.