Abstract

In micromilling, understanding transitions between the desired shearing-dominant to the undesired plowing-dominant cutting mechanism could help obtain high quality microfeatures. This work investigates the transitions in cutting mechanisms in micromilling using fluctuations in cutting force signals, characterized by using a fluctuation parameter. A new analytical model correlating fluctuation in force signals to the transitions in cutting mechanism has been developed. Two types of slot milling experiments were performed to understand the transitions in cutting mechanisms, as a function of processing parameters, and over the entire life of micro-endmills. The proposed model was found to agree with experimental values of forces within 15% error. The limiting value of the fluctuation parameter has been estimated as 0.01, which corresponds to a limiting feed of 1 μm/tooth. Feed per tooth and cutting edge radius are the important parameters that affect transitions in cutting mechanisms. The cutting mechanism changes from shearing to plowing and vice-versa over the entire life of the tool. Shearing-dominant mechanism prevailed in the first region due to the sharper cutting edges with radius less than 9 μm. Though plowing-dominant cutting mechanism prevails in the remaining two regions, the mechanism comes closer to shearing-dominant near the end of tool life. This is primarily because of the generation of localized sharpness on tool cutting edges due to chipping. Furthermore, it was evident that cutting mechanism changes from shearing to plowing due to wear, when surface roughness increases above 400 nm Ra.

References

1.
L'vov
,
N.
,
1969
, “
Determining the Minimum Possible Chip Thickness
,”
Mach. Tool.
,
4
, p.
45
.
2.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.10.1016/j.ijmachtools.2007.08.011
3.
De Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
De Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
39
54
10.1016/j.ijmachtools.2014.11.001
4.
Sahoo
,
P.
,
Patra
,
K.
,
Szalay
,
T.
, and
Dyakonov
,
A. A.
,
2020
, “
Determination of Minimum Uncut Chip Thickness and Size Effects in Micro-Milling of p-20 Die Steel Using Surface Quality and Process Signal Parameters
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4675
4691
10.1007/s00170-020-04926-6
5.
Liu
,
X.
,
DeVor
,
R.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
10.1115/1.2162905
6.
Malekian
,
M.
,
Mostofa
,
M.
,
Park
,
S.
, and
Jun
,
M.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
10.1016/j.jmatprotec.2011.05.022
7.
Rahman
,
M. A.
,
Amrun
,
M. R.
,
Rahman
,
M.
, and
Kumar
,
A. S.
,
2017
, “
Variation of Surface Generation Mechanisms in Ultra-Precision Machining Due to Relative Tool Sharpness (Rts) and Material Properties
,”
Int. J. Mach. Tools Manuf.
,
115
, pp.
15
28
.10.1016/j.ijmachtools.2016.11.003
8.
Chen
,
N.
,
Chen
,
M.
,
Wu
,
C.
,
Pei
,
X.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2017
, “
Research in Minimum Undeformed Chip Thickness and Size Effect in Micro End-Milling of Potassium Dihydrogen Phosphate Crystal
,”
Int. J. Mech. Sci.
,
134
, pp.
387
398
.10.1016/j.ijmecsci.2017.10.025
9.
Aramcharoen
,
A.
, and
Mativenga
,
P.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
.10.1016/j.precisioneng.2008.11.002
10.
Mian
,
A.
,
Driver
,
N.
, and
Mativenga
,
P.
,
2011
, “
Identification of Factors That Dominate Size Effect in Micro-Machining
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
383
394
.10.1016/j.ijmachtools.2011.01.004
11.
Yun
,
H. T.
,
Heo
,
S.
,
Lee
,
M. K.
,
Min
,
B.-K.
, and
Lee
,
S. J.
,
2011
, “
Ploughing Detection in Micromilling Processes Using the Cutting Force Signal
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
377
382
.10.1016/j.ijmachtools.2011.01.003
12.
Sun
,
Z.
,
To
,
S.
,
Zhang
,
S.
, and
Zhang
,
G.
,
2018
, “
Theoretical and Experimental Investigation Into Non-Uniformity of Surface Generation in Micro-Milling
,”
Int. J. Mech. Sci.
,
140
, pp.
313
324
.10.1016/j.ijmecsci.2018.03.019
13.
Varghese
,
A.
,
Kulkarni
,
V.
, and
Joshi
,
S. S.
,
2019
, “
Effect of Tool Condition on Cutting Mechanism in Micromilling
,”
ASME
Paper No. MSEC2019-3031.10.1115/MSEC2019-3031
14.
Ramos
,
A. C.
,
Autenrieth
,
H.
,
Strauß
,
T.
,
Deuchert
,
M.
,
Hoffmeister
,
J.
, and
Schulze
,
V.
,
2012
, “
Characterization of the Transition From Ploughing to Cutting in Micro Machining and Evaluation of the Minimum Thickness of Cut
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
594
600
.10.1016/j.jmatprotec.2011.07.007
15.
Liu
,
X.
,
Jun
,
M. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling
,”
ASME
Paper No. IMECE2004-62416.10.1115/IMECE2004-62416
16.
Waldorf
,
D.
,
DeVor
,
R.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng., Trans. ASME
,
120
(
4
), pp.
693
699
.10.1115/1.2830208
17.
Waldorf
,
D. J.
,
2006
, “
A Simplified Model for Ploughing Forces in Turning
,”
J. Manuf. Process.
,
8
(
2
), pp.
76
82
.10.1016/S1526-6125(07)00005-9
18.
Ghosh
,
A.
, and
Mallik
,
A. K.
,
1986
,
Manufacturing Science
,
Ellis Horwood
, Chichester, UK.
19.
Srinivasa
,
Y.
, and
Shunmugam
,
M.
,
2013
, “
Mechanistic Model for Prediction of Cutting Forces in Micro End-Milling and Experimental Comparison
,”
Int. J. Mach. Tools Manuf.
,
67
, pp.
18
27
.10.1016/j.ijmachtools.2012.12.004
20.
Liu
,
K.
, and
Melkote
,
S. N.
,
2006
, “
Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
730
738
.10.1115/1.2193548
21.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools Manuf.
,
42
(
12
), pp.
1373
1383
.10.1016/S0890-6955(02)00046-9
22.
Zhang
,
W.
,
Wang
,
X.
,
Hu
,
Y.
, and
Wang
,
S.
,
2018
, “
Predictive Modelling of Microstructure Changes, Micro-Hardness and Residual Stress in Machining of 304 Austenitic Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
130–131
, pp.
36
48
.10.1016/j.ijmachtools.2018.03.008
23.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V Via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
56
66
.10.1016/j.ijmachtools.2015.06.002
24.
Cao
,
H.
,
Zhou
,
K.
, and
Chen
,
X.
,
2015
, “
Chatter Identification in End Milling Process Based on EEMD and Nonlinear Dimensionless Indicators
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
52
59
.10.1016/j.ijmachtools.2015.03.002
25.
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
On-Line Chatter Detection in Milling Using Drive Motor Current Commands Extracted From Cnc
,”
Int. J. Mach. Tools Manuf.
,
132
, pp.
64
80
10.1016/j.ijmachtools.2018.04.007
26.
Witte
,
R. A.
,
2014
,
Spectrum and Network Measurements
,
Scitech Publication, UK
.
27.
Varghese
,
A.
,
Maurya
,
P. K.
,
Kulkarni
,
V.
, and
Joshi
,
S. S.
,
2019
, “
Experimental Investigation of the Correlation Between Surface Roughness and Tool-Life in Micromilling
,”
Adv. Mater. Process. Technol.
,
5
(
1
), pp.
67
77
.10.1080/2374068X.2018.1524255
28.
Ucun
,
I.
,
Aslantas
,
K.
, and
Bedir
,
F.
,
2013
, “
An Experimental Investigation of the Effect of Coating Material on Tool Wear in Micro Milling of Inconel 718 Super Alloy
,”
Wear
,
300
(
1–2
), pp.
8
19
.10.1016/j.wear.2013.01.103
29.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
, Vol.
112
,
Springer
, New York.
You do not currently have access to this content.