Abstract

The increase in the usage of titanium alloys for micro-engineering applications has driven the demand for improved micromanufacturing processes. Laser-based microfabrication processes such as direct laser ablation (DLA), laser-induced plasma micromachining (LIPMM), and magnetically controlled laser-induced plasma micromachining (MC-LIPMM) are promising technologies to fill this technological gap. In this paper, we evaluate microchannels fabricated in Ti6Al4V substrates using laser ablation, LIPMM, and MC-LIPMM. Scanning electron microscope (SEM) images and 3D scans of the channels were used to compare the surface morphology and channel geometry for different feed rates and number of laser passes. Wall angle measurements show that the LIPMM processes yield channels with steeper walls and smoother walls in comparison with the channels fabricated using direct ablation. The clear morphological differences on the surface finish of the walls made by direct ablation and using laser-induced plasmas hint at the differences in material removal mechanisms between these manufacturing methods.

References

1.
Amin
,
A. K. M. N.
,
Ismail
,
A. F.
, and
Khairussaleh
,
N. K. M.
,
2007
, “
Effectiveness of Uncoated WC–Co and PCD Inserts in End Milling of Titanium Alloy—Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
192
, pp.
147
158
.10.1016/j.jmatprotec.2007.04.095
2.
Pradhan
,
B. B.
,
Masanta
,
M.
,
Sarkar
,
B.
, and
Bhattacharyya
,
B.
,
2009
, “
Investigation of Electro-Discharge Micro-Machining of Titanium Super Alloy
,”
Int. J. Adv. Manuf. Technol.
,
41
(
11–12
), pp.
1094
1106
.10.1007/s00170-008-1561-y
3.
Veiga
,
C.
,
Davim
,
J. P.
, and
Loureiro
,
A.
,
2013
, “
Review on Machinability of Titanium Alloys: The Process Perspective
,”
Rev. Adv. Mater. Sci.
,
34
, pp.
148
164
.http://www.ipme.ru/e-journals/RAMS/no_23413/04_23413_veiga.pdf
4.
Lin
,
Y. C.
,
Yan
,
B. H.
, and
Chang
,
Y. S.
,
2000
, “
Machining Characteristics of Titanium Alloy (Ti–6Al–4V) Using a Combination Process of EDM With USM
,”
J. Mater. Process. Technol.
,
104
(
3
), pp.
171
177
.10.1016/S0924-0136(00)00539-2
5.
Rihakova
,
L.
, and
Chmelickova
,
H.
,
2015
, “
Laser Micromachining of Glass, Silicon, and Ceramics
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
6
.10.1155/2015/584952
6.
Pallav
,
K.
, and
Ehmann
,
K.
,
2010
, “
Feasibility of Laser-Induced Plasma Micro- Machining (LIP-MM)
,” Precision Assembly Technologies and Systems, Springer, Berlin, pp.
73
80
.10.1007/978-3-642-11598-1
7.
Pallav
,
K.
, and
Ehmann
,
K.
,
2010
, “
Laser Induced Plasma Micro-Machining
,”
ASME
Paper No. MSEC2010-34242.10.1115/MSEC2010-34242
8.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
,
2014
, “
Comparative Assessment of the Laser Induced Plasma Micromachining and the Ultrashort Pulsed Laser Ablation Processes
,”
ASME J. Micro- Nano-Manuf.
,
2
(
3
), p.
031001
.10.1115/1.4027738
9.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
,
2015
, “
Laser Induced Plasma Micromachining Process: Principles and Performance
,”
ASME J. Micro- Nano-Manuf.
,
3
(
3
), p.
031004
.10.1115/1.4030706
10.
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High Throughput Microfabrication Using Laser Induced Plasma in Saline Aqueous Medium
,”
J. Mater. Process. Technol.
,
217
, pp.
77
87
.10.1016/j.jmatprotec.2014.10.018
11.
Wolff
,
S.
, and
Saxena
,
I.
,
2014
, “
A Preliminary Study on the Effect of External Magnetic Fields on Laser-Induced Plasma Micromachining (LIPMM)
,”
Manuf. Lett.
,
2
(
2
), pp.
54
59
.10.1016/j.mfglet.2014.02.003
12.
Saxena
,
I.
,
Wolff
,
S.
, and
Cao
,
J.
,
2015
, “
Unidirectional Magnetic Field Assisted Laser Induced Plasma Micro-Machining
,”
Manuf. Lett.
,
3
, pp.
1
4
.10.1016/j.mfglet.2014.09.001
13.
Bhandari
,
S.
,
Murnal
,
M.
,
Cao
,
J.
, and
Ehmann
,
K.
,
2019
, “
Comparative Experimental Investigation of Micro-Channel Fabrication in Ti Alloys by Laser Ablation and Laser-Induced Plasma Micro-Machining
,”
SME North American Manuf. Research Conference
, Erie, PA, Sept. 9–12, pp.
418
423
.
14.
Zhang
,
J.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
1998
, “
High-Speed Machining of Glass Materials by Laser-Induced Plasma-Assisted Ablation Using a 532-nm Laser
,”
Appl. Phys. A
,
67
(
4
), pp.
499
501
.10.1007/s003390050810
15.
Tarasenko
,
V. F.
,
Goncharenko
,
I. M.
,
Koval
,
N. N.
,
Orlovskii
,
V. M.
,
Fedenev
,
A. V.
,
Velikanov
,
S. D.
,
Borisov
,
V. P.
,
Podavalov
,
A. M.
,
Zolotov
,
M. I.
,
Podsezertsev
,
A. L.
,
Tkachev
,
A. N.
, and
Yakovlenko
,
S. I.
,
2003
, “
Study of the Effect of Infrared Laser Radiation on a Steel Surface
,”
Laser Phys.
,
13
, pp.
1478
1486
.
16.
Tao
,
S.
,
Jacobsen
,
R. L.
, and
Wu
,
B.
,
2010
, “
Physical Mechanisms for Picosecond Laser Ablation of Silicon Carbide at Infrared and Ultraviolet Wavelengths
,”
Appl. Phys. Lett.
,
97
(
18
), p.
181918
.10.1063/1.3511739
17.
Stolarski
,
D. J.
,
Hardman
,
J. M.
,
Bramlette
,
C. M.
,
Noojin
,
G. D.
,
Thomas
,
R. J.
,
Rockwell
,
B. A.
, and
Roach
,
W. P.
,
1995
, “
Integrated Light Spectroscopy of Laser-Induced Breakdown in Aqueous Media
,”
Proc. SPIE
,
2391
, pp.
100
109
.10.1117/12.209873
18.
Ahmed
,
N.
,
Darwish
,
S.
, and
Alahmari
,
A. M.
,
2016
, “
Experimental Investigation of Dimensional Variation in Laser-Machined Micro-Channels Produced in Titanium Alloy
,”
J. Laser Micro Nanoeng.
,
11
(
2
), pp.
210
226
.10.2961/jlmn.2016.02.0012
19.
Harilal
,
S. S.
,
Tillack
,
M. S.
,
O'Shay
,
B.
,
Bindhu
,
C. V.
, and
Najmabadi
,
F.
,
2004
, “
Confinement and Dynamics of Laser-Produced Plasma Expanding Across a Transverse Magnetic Field
,”
Phys. Rev. E
,
69
(
2
), p.
026413
.10.1103/PhysRevE.69.026413
You do not currently have access to this content.