Abstract

This study proposes a novel approach for synthesizing and etching bicontinuous FeCrAl-Al2O3 composites as a means for replacing FeCrAl foams as catalyst scaffolds in biodriven alcohol reactors for jet-fuel production. Conventional FeCrAl foams suffer from poor availability and consequent high costs. New additive manufacturing techniques provide an opportunity to produce tailored foams at reasonable times and at acceptable costs. This research aimed to generate a porous FeCrAl structure by etching a bicontinuous FeCrAl-Al2O3 composite produced by laser powder bed fusion of amalgamated FeCrAl and Al2O3 powders. The composite powder for laser powder bed fusion is created by ball-milling FeCrAl and Al2O3 powders. This research focuses on achieving a bi-continuous FeCrAl-Al2O3 structure, essential for the selective removal of the ceramic phase. The influence of laser processing parameters on the microstructure was examined across a range of laser powers (60–120 W) and scan speeds (100–400 mm/s), showing that higher powers and speeds produce finer metal struts. A bi-continuous microstructure was consistently obtained, marking a key achievement. The Al2O3 removal process involved a two-step etching method using hydrochloric and phosphoric acids, tested across various etching times. The alumina phase was reduced from 36 vol% to 17 vol% (corresponding to an increase in porosity from 24 vol% to 43 vol%), showing the potential for use as a porous catalyst scaffold. This research demonstrates the potential for using additive manufacturing to produce porous FeCrAl structures capable of replacing hard-to-source FeCrAl foams.

References

1.
Xu
,
G.
,
Schwarz
,
P.
, and
Yang
,
H.
,
2020
, “
Adjusting Energy Consumption Structure to Achieve China's CO2 Emissions Peak
,”
Renew. Sust. Energy Rev.
,
122
, p.
109737
.10.1016/j.rser.2020.109737
2.
Wei
,
H.
,
Liu
,
W.
,
Chen
,
X.
,
Yang
,
Q.
,
Li
,
J.
, and
Chen
,
H.
,
2019
, “
Renewable Bio-Jet Fuel Production for Aviation: A Review
,”
Fuel
,
254
, p.
115599
.10.1016/j.fuel.2019.06.007
3.
Duan
,
H.
,
Mo
,
J.
,
Fan
,
Y.
, and
Wang
,
S.
,
2018
, “
Achieving China's Energy and Climate Policy Targets in 2030 Under Multiple Uncertainties
,”
Energy Econ.
,
70
, pp.
45
60
.10.1016/j.eneco.2017.12.022
4.
Pang
,
S.
,
2019
, “
Advances in Thermochemical Conversion of Woody Biomass to Energy, Fuels and Chemicals
,”
Biotechnol. Adv.
,
37
(
4
), pp.
589
597
.10.1016/j.biotechadv.2018.11.004
5.
Chisti
,
Y.
,
2013
, “
Constraints to Commercialization of Algal Fuels
,”
J. Biotechnol.
,
167
(
3
), pp.
201
214
.10.1016/j.jbiotec.2013.07.020
6.
Díaz-Pérez
,
M. A.
, and
Serrano-Ruiz
,
J. C.
,
2020
, “
Catalytic Production of Jet Fuels From Biomass
,”
Molecules
,
25
(
4
), p.
802
.10.3390/molecules25040802
7.
Wang
,
W. C.
, and
Tao
,
L.
,
2016
, “
Bio-Jet Fuel Conversion Technologies
,”
Renew. Sust. Energ. Rev.
,
53
, pp.
801
822
.10.1016/j.rser.2015.09.016
8.
Howk
,
B. W.
, and
Lazier
,
W. A.
,
1940
, “
The Hydration, Dehydration and Hydrolysis of Organic Compounds
,”
Twelfth Report of the Committee on Catalysis
,
National Research Council
, ed.,
Wiley
,
New York, NY
, pp.
28
69
.
9.
Zhan
,
N.
,
Hu
,
Y.
,
Li
,
H.
,
Yu
,
D.
,
Han
,
Y.
, and
He
,
H.
,
2010
, “
Lanthanum–Phosphorous Modified HZSM-5 Catalysts in Dehydration of Ethanol to Ethylene: A Comparative Analysis
,”
Catal. Commun.
,
11
(
7
), pp.
633
637
.10.1016/j.catcom.2010.01.011
10.
Wright
,
M.
,
2012
, “
Process for the Dehydration of Aqueous Bio-Derived Terminal Alcohols to Terminal Alkenes
,” U.S. Patent No.
US8912373B2
.https://patents.google.com/patent/US8912373B2/en
11.
Cybulski
,
A.
, and
Moulijn
,
J. A.
,
2006
,
Structured Catalysts and Reactors
,
CRC/Taylor and Francis
,
Boca Raton, FL
.
12.
Wu
,
D. F.
, and
Zhang
,
H.
,
2013
, “
Mechanical Stability of Monolithic Catalysts: Scattering of Washcoat Adhesion and Failure Mechanism of Active Material
,”
Ind. Eng. Chem. Res.
,
52
(
41
), pp.
14713
14721
.10.1021/ie402546q
13.
Kulshreshtha
,
A.
, and
Dhakad
,
S. K.
,
2020
, “
Preparation of Metal Foam by Different Methods: A Review
,”
Mater. Today-Proc.
,
26
, pp.
1784
1790
.10.1016/j.matpr.2020.02.375
14.
Liu
,
H.
,
Gu
,
D.
,
Yang
,
J.
,
Shi
,
K.
, and
Yuan
,
L.
,
2022
, “
Laser Powder Bed Fusion of Node-Reinforced Hybrid Lattice Structure Inspired by Crystal Microstructure: Structural Feature Sensitivity and Mechanical Performance
,”
Mater. Sci. Eng. A
,
858
, p.
144048
.10.1016/j.msea.2022.144048
15.
Paul
,
B. K.
,
McNeff
,
P.
,
Brannon
,
S.
, and
O'Halloran
,
M.
,
2019
, “
The Role of Manufacturing Process Design in Technology Commercialization
,”
Emerging Frontiers in Industrial and Systems Engineering
,
Nembhard
,
H. B.
,
Cudney
,
E. A.
, and
Coperich
,
K. M.
, eds.,
CRC/Taylor and Francis
,
Boca Raton, FL
.
16.
Gao
,
Q.
,
Lizarazo-Adarme
,
J. A.
,
Paul
,
B. K.
, and
Haapala
,
K. R.
,
2016
, “
An Economic and Environmental Assessment Model for Microchannel Device Manufacturing: Part 2 – Application
,”
J. Clean. Prod.
,
120
, pp.
146
156
.10.1016/j.jclepro.2015.04.141
17.
Ghanadi
,
N.
, and
Pasebani
,
S.
,
2024
, “
A Review on Wire-Laser Directed Energy Deposition: Parameter Control, Process Stability, and Future Research Paths
,”
J. Manuf. Mater. Process.
,
8
(
2
), p.
84
.10.3390/jmmp8020084
18.
Boschetto
,
A.
,
Bottini
,
L.
, and
Ghanadi
,
N.
,
2022
, “
Areal Analysis Investigation of Selective Laser Melting Parts
,”
J. Manuf. Mater. Process.
,
6
(
4
), p.
83
.10.3390/jmmp6040083
19.
Wang
,
C. J.
,
Hazlehurst
,
K.
,
Arjunan
,
A.
, and
Shen
,
L.
,
2021
, “
Analysis of Porous Structures From Laser Powder Bed Fusion Additive Manufacturing
,”
Advances in Manufacturing Technology XXXIV
,
Shafik
,
M.
ed.,
IOP Press
,
Amsterdam, The Netherlands
, pp.
97
102
.
20.
Mirzaei
,
M.
, and
Paydar
,
M. H.
,
2019
, “
Fabrication and Characterization of Core–Shell Density-Graded 316 L Stainless Steel Porous Structure
,”
J. Mater. Eng. Perform.
,
28
(
1
), pp.
221
230
.10.1007/s11665-018-3797-5
21.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
, pp.
33
42
.10.1016/j.actamat.2016.05.017
22.
Zhang
,
Y.
, and
Bandyopadhyay
,
A.
,
2018
, “
Direct Fabrication of Compositionally Graded Ti-Al2O3 Multi-Material Structures Using Laser Engineered Net Shaping
,”
Addit. Manuf.
,
21
, pp.
104
111
.10.1016/j.addma.2018.03.001
23.
Juste
,
E.
,
Petit
,
F.
,
Lardot
,
V.
, and
Cambier
,
F.
,
2014
, “
Shaping of Ceramic Parts by Selective Laser Melting of Powder Bed
,”
J. Mater. Res.
,
29
(
17
), pp.
2086
2094
.10.1557/jmr.2014.127
24.
Schuöcker
,
D.
,
1998
,
Handbook of the EuroLaser Academy
,
Springer
,
New York
.
25.
Ibrahim
,
K. M.
,
Moumani
,
M. K.
, and
Mohammad
,
S. K.
,
2018
, “
Extraction of γ-Alumina From Low-Cost Kaolin
,”
Resource
,
7
(
4
), p.
63
.10.3390/resources7040063
26.
Levi
,
C. G.
,
Jayaram
,
V.
,
Valencia
,
J. J.
, and
Mehrabian
,
R.
,
1988
, “
Phase Selection in Electrohydrodynamic Atomization of Alumina
,”
J. Mater. Res.
,
3
(
5
), pp.
969
983
.10.1557/JMR.1988.0969
27.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann.
,
62
(
1
), pp.
223
226
.10.1016/j.cirp.2013.03.032
28.
Das
,
B.
,
Gopinath
,
M.
,
Nath
,
A. K.
, and
Bandyopadhyay
,
P. P.
,
2018
, “
Effect of Cooling Rate on Residual Stress and Mechanical Properties of Laser Remelted Ceramic Coating
,”
J. Euro. Cerm. Soc.
,
38
(
11
), pp.
3932
3944
.10.1016/j.jeurceramsoc.2018.04.020
29.
Stuart
,
A.
,
Krishnan
,
S.
,
Weber
,
J. K. R.
,
Felten
,
J. J.
,
Nordine
,
P. C.
,
Beno
,
M. A.
,
Price
,
D. L.
, and
Saboungi
,
M.-L.
,
1997
, “
Structure of Liquid Aluminum Oxide
,”
Phys. Rev. Lett.
,
78
(
3
), pp.
464
466
.10.1103/PhysRevLett.78.464
30.
Landron
,
C.
,
Hennet
,
L.
,
Jenkins
,
T. E.
,
Greaves
,
G. N.
,
Coutures
,
J. P.
, and
Soper
,
A. K.
,
2001
, “
Liquid Alumina: Detailed Atomic Coordination Determined From Neutron Diffraction Data Using Empirical Potential Structure Refinement
,”
Phys. Rev. Lett.
,
86
(
21
), pp.
4839
4842
.10.1103/PhysRevLett.86.4839
31.
Voort
,
G. F. V.
,
2004
, “
ASM Handbook Volume 9: Metallography and Microstructure
,”
ASM International
,
Materials Park, OH
.
You do not currently have access to this content.