Abstract

Three-dimensional (3D) microneedle arrays (MAs) have shown remarkable performances for a wide range of biomedical applications. Achieving advanced customizable 3D MAs for personalized research and treatment remain a formidable challenge. In this paper, we have developed a high-resolution electrohydrodynamic (EHD) 3D printing process for fabricating customizable 3D MAs with economical and biocompatible molten alloy. The critical printing parameters (i.e., voltage and pressure) on the printing process for both two-dimensional (2D) and 3D features are characterized, and an optimal set of printing parameters was obtained for printing 3D MAs. We have also studied the effect of the tip-nozzle separation speed on the final tip dimension, which will directly influence MAs' insertion performance and functions. With the optimal process parameters, we successfully EHD printed customizable 3D MAs with varying spacing distances and shank heights. A 3 × 3 customized 3D MAs configuration with various heights ranging from 0.8 mm to 1 mm and a spacing distance as small as 350 μm were successfully fabricated, in which the diameter of each individual microneedle was as small as 100 μm. A series of tests were conducted to evaluate the printed 3D MAs. The experimental results demonstrated that the printed 3D MAs exhibit good mechanical strength for implanting and good electrical properties for electrophysiological sensing and stimulation. All results show the potential applications of the EHD printing technique in fabricating cost-effective, customizable, high-performance MAs for biomedical applications.

References

1.
Li
,
J.
,
Ma
,
Y.
,
Huang
,
D.
,
Wang
,
Z.
,
Zhang
,
Z.
,
Ren
,
Y.
,
Hong
,
M.
, et al.,
2022
, “
High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography
,”
Nano-Micro Lett.
,
14
(
1
), p.
132
.10.1007/s40820-022-00870-0
2.
Li
,
R.
,
Zhang
,
L.
,
Jiang
,
X.
,
Li
,
L.
,
Wu
,
S.
,
Yuan
,
X.
,
Cheng
,
H.
,
Jiang
,
X.
, and
Gou
,
M.
,
2022
, “
3D-Printed Microneedle Arrays for Drug Delivery
,”
J. Controlled Release
,
350
, pp.
933
948
.10.1016/j.jconrel.2022.08.022
3.
Barnum
,
L.
,
Quint
,
J.
,
Derakhshandeh
,
H.
,
Samandari
,
M.
,
Aghabaglou
,
F.
,
Farzin
,
A.
,
Abbasi
,
L.
,
Bencherif
,
S.
,
Memic
,
A.
,
Mostafalu
,
P.
, and
Tamayol
,
A.
,
2021
, “
3D-Printed Hydrogel-Filled Microneedle Arrays
,”
Adv. Healthcare Mater.
,
10
(
13
), p.
2001922
.10.1002/adhm.202001922
4.
Sarabi
,
M. R.
,
Bediz
,
B.
,
Falo
,
L. D.
,
Korkmaz
,
E.
, and
Tasoglu
,
S.
,
2021
, “
3D Printing of Microneedle Arrays: Challenges Towards Clinical Translation
,”
J. 3D Print. Med.
,
5
(
2
), pp.
65
70
.10.2217/3dp-2021-0010
5.
Vora
,
L. K.
,
Moffatt
,
K.
,
Tekko
,
I. A.
,
Paredes
,
A. J.
,
Volpe-Zanutto
,
F.
,
Mishra
,
D.
,
Peng
,
K.
,
Raj Singh Thakur
,
R.
, and
Donnelly
,
R. F.
,
2021
, “
Microneedle Array Systems for Long-Acting Drug Delivery
,”
Eur. J. Pharm. Biopharm.
,
159
, pp.
44
76
.10.1016/j.ejpb.2020.12.006
6.
Halder
,
J.
,
Gupta
,
S.
,
Kumari
,
R.
,
Gupta
,
G. D.
, and
Rai
,
V. K.
,
2021
, “
Microneedle Array: Applications, Recent Advances, and Clinical Pertinence in Transdermal Drug Delivery
,”
J. Pharm. Innovation
,
16
(
3
), pp.
558
565
.10.1007/s12247-020-09460-2
7.
Wang
,
R.
,
Bai
,
J.
,
Zhu
,
X.
,
Li
,
Z.
,
Cheng
,
L.
,
Zhang
,
G.
, and
Zhang
,
W.
,
2022
, “
A PDMS-Based Microneedle Array Electrode for Long-Term ECG Recording
,”
Biomed. Microdevices
,
24
(
3
), p.
27
.10.1007/s10544-022-00626-y
8.
Ren
,
L.
,
Liu
,
B.
,
Zhou
,
W.
, and
Jiang
,
L.
,
2020
, “
A Mini Review of Microneedle Array Electrode for Bio-Signal Recording: A Review
,”
IEEE Sens. J.
,
20
(
2
), pp.
577
590
.10.1109/JSEN.2019.2944847
9.
Hoogerwerf
,
A. C.
, and
Wise
,
K. D.
,
1994
, “
A Three-Dimensional Microelectrode Array for Chronic Neural Recording
,”
IEEE Trans. Biomed. Eng.
,
41
(
12
), pp.
1136
1146
.10.1109/10.335862
10.
Shin
,
H.
,
Jeong
,
S.
,
Lee
,
J.-H.
,
Sun
,
W.
,
Choi
,
N.
, and
Cho
,
I.-J.
,
2021
, “
3D High-Density Microelectrode Array With Optical Stimulation and Drug Delivery for Investigating Neural Circuit Dynamics
,”
Nat. Commun.
,
12
(
1
), p.
492
.10.1038/s41467-020-20763-3
11.
Saleh
,
M. S.
,
Ritchie
,
S. M.
,
Nicholas
,
M. A.
,
Gordon
,
H. L.
,
Hu
,
C.
,
Jahan
,
S.
,
Yuan
,
B.
, et al.,
2022
, “
CMU Array: A 3D Nanoprinted, Fully Customizable High-Density Microelectrode Array Platform
,”
Sci. Adv.
,
8
(
40
), p.
eabj4853
.10.1126/sciadv.abj4853
12.
Ji
,
J.
,
Tay
,
F. E.
,
Miao
,
J.
, and
Iliescu
,
C.
,
2006
, “
Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery
,”
J. Phys.: Conf. Ser.
,
34
, pp.
1127
1131
.10.1088/1742-6596/34/1/186
13.
Omatsu
,
T.
,
Chujo
,
K.
,
Miyamoto
,
K.
,
Okida
,
M.
,
Nakamura
,
K.
,
Aoki
,
N.
, and
Morita
,
R.
,
2010
, “
Metal Microneedle Fabrication Using Twisted Light With Spin
,”
Opt. Express
,
18
(
17
), pp.
17967
17973
.10.1364/OE.18.017967
14.
Wang
,
J.
,
Wang
,
H.
,
Lai
,
L.
, and
Li
,
Y.
,
2020
, “
Preparation of Microneedle Array Mold Based on MEMS Lithography Technology
,”
Micromachines (Basel)
,
12
(
1
), p.
23
.10.3390/mi12010023
15.
Bolton
,
C. J. W.
,
Howells
,
O.
,
Blayney
,
G. J.
,
Eng
,
P. F.
,
Birchall
,
J. C.
,
Gualeni
,
B.
,
Roberts
,
K.
,
Ashraf
,
H.
, and
Guy
,
O. J.
,
2020
, “
Hollow Silicon Microneedle Fabrication Using Advanced Plasma Etch Technologies for Applications in Transdermal Drug Delivery
,”
Lab Chip
,
20
(
15
), pp.
2788
2795
.10.1039/D0LC00567C
16.
Judy
,
J. W.
,
2001
, “
Microelectromechanical Systems (MEMS): Fabrication, Design and Applications
,”
Smart Mater. Struct.
,
10
(
6
), pp.
1115
1134
.10.1088/0964-1726/10/6/301
17.
Vinayakumar
,
K. B.
,
Hegde
,
G. M.
,
Nayak
,
M. M.
,
Dinesh
,
N. S.
, and
Rajanna
,
K.
,
2014
, “
Fabrication and Characterization of Gold Coated Hollow Silicon Microneedle Array for Drug Delivery
,”
Microelectron. Eng.
,
128
, pp.
12
18
.10.1016/j.mee.2014.05.039
18.
Thanh
,
H. L.
,
Ta
,
B. Q.
,
The
,
H. L.
,
Nguyen
,
V.
,
Wang
,
K.
, and
Karlsen
,
F.
,
2015
, “
Low-Cost Fabrication of Hollow Microneedle Arrays Using CNC Machining and UV Lithography
,”
J. Microelectromech. Syst.
,
24
(
5
), pp.
1583
1593
.10.1109/JMEMS.2015.2424926
19.
Malek-Khatabi
,
A.
,
Faraji
,
Rad
,
Z.
,
Rad-Malekshahi
,
M.
, and
Akbarijavar
,
H.
,
2023
, “
Development of Dissolvable Microneedle Patches by CNC Machining and Micromolding for Drug Delivery
,”
Mater. Lett.
,
330
, p.
133328
.10.1016/j.matlet.2022.133328
20.
Parker
,
E. R.
,
Rao
,
M. P.
,
Turner
,
K. L.
,
Meinhart
,
C. D.
, and
MacDonald
,
N. C.
,
2007
, “
Bulk Micromachined Titanium Microneedles
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
289
295
.10.1109/JMEMS.2007.892909
21.
Albarahmieh
,
E.
,
AbuAmmouneh
,
L.
,
Kaddoura
,
Z.
,
AbuHantash
,
F.
,
Alkhalidi
,
B. A.
, and
Al-Halhouli
,
A.
,
2019
, “
Fabrication of Dissolvable Microneedle Patches Using an Innovative Laser-Cut Mould Design to Shortlist Potentially Transungual Delivery Systems: In Vitro Evaluation
,”
AAPS PharmSciTech
,
20
(
5
), p.
215
.10.1208/s12249-019-1429-5
22.
Li
,
J.
,
Zhou
,
Y.
,
Yang
,
J.
,
Ye
,
R.
,
Gao
,
J.
,
Ren
,
L.
,
Liu
,
B.
,
Liang
,
L.
, and
Jiang
,
L.
,
2019
, “
Fabrication of Gradient Porous Microneedle Array by Modified Hot Embossing for Transdermal Drug Delivery
,”
Mater. Sci. Eng.: C
,
96
, pp.
576
582
.10.1016/j.msec.2018.11.074
23.
Wilke
,
N.
,
Mulcahy
,
A.
,
Ye
,
S.-R.
, and
Morrissey
,
A.
,
2005
, “
Process Optimization and Characterization of Silicon Microneedles Fabricated by Wet Etch Technology
,”
Microelectron. J.
,
36
(
7
), pp.
650
656
.10.1016/j.mejo.2005.04.044
24.
Juster
,
H.
,
Aar
,
B.
, and
Brouwer
,
H.
,
2019
, “
A Review on Microfabrication of Thermoplastic Polymer‐Based Microneedle Arrays
,”
Polym. Eng. Sci.
,
59
(
5
), pp.
877
890
.10.1002/pen.25078
25.
Ren
,
L.
,
Jiang
,
Q.
,
Chen
,
K.
,
Chen
,
Z.
,
Pan
,
C.
, and
Jiang
,
L.
,
2016
, “
Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring
,”
Sensors (Basel)
,
16
(
6
), p.
908
.10.3390/s16060908
26.
Chang
,
H.
,
Zheng
,
M.
,
Chew
,
S. W. T.
, and
Xu
,
C.
,
2020
, “
Advances in the Formulations of Microneedles for Manifold Biomedical Applications
,”
Adv. Mater. Technol.
,
5
(
4
), p.
1900552
.10.1002/admt.201900552
27.
Ghane-Motlagh
,
B.
, and
Sawan
,
M.
,
2013
, “
A Review of Microelectrode Array Technologies: Design and Implementation Challenges
,”
Proceedings of the 2013 2nd International Conference on Advances in Biomedical Engineering
, Tripoli, Lebanon,
Sept. 11–13, pp. 38–41
.
28.
Shahrubudin
,
N.
,
Lee
,
T. C.
, and
Ramlan
,
R.
,
2019
, “
An Overview on 3D Printing Technology: Technological, Materials, and Applications
,”
Procedia Manuf.
,
35
, pp.
1286
1296
.10.1016/j.promfg.2019.06.089
29.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
, John
Wiley & Sons
, Hoboken, NJ.
30.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
,
Springer Nature
,
Cham, Switzerland
.
31.
Zhang
,
W.
,
Liu
,
H.
,
Zhang
,
X.
,
Li
,
X.
,
Zhang
,
G.
, and
Cao
,
P.
,
2021
, “
3D Printed Micro‐Electrochemical Energy Storage Devices: From Design to Integration
,”
Adv. Funct. Mater.
,
31
(
40
), p.
2104909
.10.1002/adfm.202104909
32.
Jha
,
S.
,
Velhal
,
M.
,
Stewart
,
W.
,
Amin
,
V.
,
Wang
,
E.
, and
Liang
,
H.
,
2022
, “
Additively Manufactured Electrodes for Supercapacitors: A Review
,”
Appl. Mater. Today
,
26
, p.
101220
.10.1016/j.apmt.2021.101220
33.
Cui
,
Z.
,
Han
,
Y.
,
Huang
,
Q.
,
Dong
,
J.
, and
Zhu
,
Y.
,
2018
, “
Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics
,”
Nanoscale
,
10
(
15
), pp.
6806
6811
.10.1039/C7NR09570H
34.
Khan
,
S.
,
Ali
,
S.
, and
Bermak
,
A.
,
2019
, “
Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications
,”
Sensors (Basel)
,
19
(
5
), p.
1230
.10.3390/s19051230
35.
Xu
,
W.
,
Jambhulkar
,
S.
,
Zhu
,
Y.
,
Ravichandran
,
D.
,
Kakarla
,
M.
,
Vernon
,
B.
,
Lott
,
D. G.
, et al.,
2021
, “
3D Printing for Polymer/Particle-Based Processing: A Review
,”
Composites, Part B
,
223
, p.
109102
.10.1016/j.compositesb.2021.109102
36.
Gadagi
,
B.
, and
Lekurwale
,
R.
,
2021
, “
A Review on Advances in 3D Metal Printing
,”
Mater. Today
,
45
, pp.
277
283
.10.1016/j.matpr.2020.10.436
37.
Tan
,
H. W.
,
An
,
J.
,
Chua
,
C. K.
, and
Tran
,
T.
,
2019
, “
Metallic Nanoparticle Inks for 3D Printing of Electronics
,”
Adv. Electron. Mater.
,
5
(
5
), p.
1800831
.10.1002/aelm.201800831
38.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
, et al.,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.10.1038/nmat1974
39.
Han
,
Y.
,
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Super-Resolution Electrohydrodynamic (EHD) 3D Printing of Micro-Structures Using Phase-Change Inks
,”
Manuf. Lett.
,
2
(
4
), pp.
96
99
.10.1016/j.mfglet.2014.07.005
40.
Kamal
,
W.
,
Rahman
,
K.
,
Ahmad
,
S.
,
Shakeel
,
M.
, and
Ali
,
T.
,
2022
, “
Electrohydrodynamic Printed Nanoparticle-Based Resistive Temperature Sensor
,”
Flexible Printed Electron.
,
7
(
4
), p.
045008
.10.1088/2058-8585/aca48a
41.
Han
,
Y.
, and
Dong
,
J.
,
2017
, “
High-Resolution Direct Printing of Molten-Metal Using Electrohydrodynamic Jet Plotting
,”
Manuf. Lett.
,
12
, pp.
6
9
.10.1016/j.mfglet.2017.04.001
42.
Kwon
,
H.-J.
,
Hong
,
J.
,
Nam
,
S. Y.
,
Choi
,
H. H.
,
Li
,
X.
,
Jeong
,
Y. J.
, and
Kim
,
S. H.
,
2021
, “
Overview of Recent Progress in Electrohydrodynamic Jet Printing in Practical Printed Electronics: Focus on the Variety of Printable Materials for Each Component
,”
Mater. Adv.
,
2
(
17
), pp.
5593
5615
.10.1039/D1MA00463H
43.
Ren
,
P.
, and
Dong
,
J.
,
2021
, “
Direct Fabrication of Via Interconnects by Electrohydrodynamic Printing for Multi‐Layer 3D Flexible and Stretchable Electronics
,”
Adv. Mater. Technol.
,
6
(
9
), p.
2100280
.10.1002/admt.202100280
44.
Abbasi
,
R.
,
Tang
,
J.
,
Baharfar
,
M.
,
Zhang
,
C.
,
Allioux
,
F.-M.
,
Zhang
,
J.
,
Tajik
,
M.
, et al.,
2022
, “
Induction Heating for the Removal of Liquid Metal-Based Implant Mimics: A Proof-of-Concept
,”
Appl. Mater. Today
,
27
, p.
101459
.10.1016/j.apmt.2022.101459
45.
Gillies
,
G. T.
,
Allison
,
S. W.
, and
Tissue
,
B. M.
,
2002
, “
Positive Pressure Infusion of Fluorescent Nanoparticles as a Probe of the Structure of Brain Phantom Gelatins
,”
Nanotechnology
,
13
(
4
), p.
484
.10.1088/0957-4484/13/4/308
46.
Ferguson
,
M.
,
Sharma
,
D.
,
Ross
,
D.
, and
Zhao
,
F.
,
2019
, “
A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces
,”
Adv. Healthcare Mater.
,
8
(
19
), p.
1900558
.10.1002/adhm.201900558
You do not currently have access to this content.