Abstract

This paper presents a novel approach for fabricating superhydrophobic surfaces using inverted glancing angle deposition (I-GLAD). GLAD is an advanced physical vapor deposition technique that utilizes substrate tilt and rotation to create three-dimensional nanofeature arrays. Unlike conventional top-down nanofabrication methods, GLAD offers unique advantages in generating various nanofeatures such as pillars, springs, chevrons, ribbons, and nanoporous membranes. Superhydrophobicity, inspired by natural examples like lotus leaves and cicada wings, relies on highly porous micro/nanostructures that reduce surface energy and impart water-repellent properties. GLAD’s capability to produce hierarchical and porous nanostructures makes it an ideal candidate for superhydrophobic surface fabrication. Previous researches have proposed GLAD processes for superhydrophobic surfaces; however, these approaches suffer from flaws such as being time-consuming or requiring challenging template assistance. In this paper, we introduce a new I-GLAD approach for creating superhydrophobic surfaces that eliminates the need for a seeding layer and an additional coating, simplifying the fabrication process. The fabrication process of I-GLAD includes natural seeding, growing, capping, and inverting. The resulting superhydrophobic surfaces exhibit a high water contact angle of over 155 deg. We further explore additional GLAD recipes to create surfaces with different water contact angles, enabling a comprehensive analysis of superhydrophobic properties. Potential applications for superhydrophobic surfaces include anti-icing coatings, self-cleaning surfaces, and antimicrobial surfaces.

References

1.
Ma
,
M.
, and
Hill
,
R. M.
,
2006
, “
Superhydrophobic Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
193
202
.10.1016/j.cocis.2006.06.002
2.
Jiang
,
R.
,
Hao
,
L.
,
Song
,
L.
,
Tian
,
L.
,
Fan
,
Y.
,
Zhao
,
J.
,
Liu
,
C.
,
Ming
,
W.
, and
Ren
,
L.
,
2020
, “
Lotus-Leaf-Inspired Hierarchical Structured Surface With Non-Fouling and Mechanical Bactericidal Performances
,”
Chem. Eng. J.
,
398
, p.
125609
.10.1016/j.cej.2020.125609
3.
Yu
,
J.
,
Chary
,
S.
,
Das
,
S.
,
Tamelier
,
J.
,
Pesika
,
N. S.
,
Turner
,
K. L.
, and
Israelachvili
,
J. N.
,
2011
, “
Gecko-Inspired Dry Adhesive for Robotic Applications
,”
Adv. Funct. Mater.
,
21
(
16
), pp.
3010
3018
.10.1002/adfm.201100493
4.
Qu
,
C.
,
Rozsa
,
J. L.
,
Jung
,
H. J.
,
Williams
,
A. R.
,
Markin
,
E. K.
,
Running
,
M. P.
,
McNamara
,
S.
, and
Walsh
,
K. M.
,
2023
, “
Bio-Inspired Antimicrobial Surfaces Fabricated by Glancing Angle Deposition
,”
Sci. Rep.
,
13
(
1
), p.
207
.10.1038/s41598-022-27225-4
5.
Zhai
,
L.
,
Berg
,
M. C.
,
Cebeci
,
F. Ç.
,
Kim
,
Y.
,
Milwid
,
J. M.
,
Rubner
,
M. F.
, and
Cohen
,
R. E.
,
2006
, “
Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle
,”
Nano Lett.
,
6
(
6
), pp.
1213
1217
.10.1021/nl060644q
6.
Min
,
W. L.
,
Jiang
,
B.
, and
Jiang
,
P.
,
2008
, “
Bioinspired Self-Cleaning Antireflection Coatings
,”
Adv. Mater.
,
20
(
20
), pp.
3914
3918
.10.1002/adma.200800791
7.
Cao
,
L.
,
Jones
,
A. K.
,
Sikka
,
V. K.
,
Wu
,
J.
, and
Gao
,
D.
,
2009
, “
Anti-Icing Superhydrophobic Coatings
,”
Langmuir
,
25
(
21
), pp.
12444
12448
.10.1021/la902882b
8.
Xie
,
H.
,
Xu
,
W. H.
,
Jia
,
S. H.
, and
Wu
,
T.
,
2021
, “
Tunable Fabrication of Biomimetic Polypropylene Nanopillars With Robust Superhydrophobicity and Antireflectivity
,”
Nanotechnology
,
32
(
39
), p.
395301
.10.1088/1361-6528/ac0b18
9.
Feng
,
J.
,
Tuominen
,
M. T.
, and
Rothstein
,
J. P.
,
2011
, “
Hierarchical Superhydrophobic Surfaces Fabricated by Dual-Scale Electron-Beam-Lithography With Well-Ordered Secondary Nanostructures
,”
Adv. Funct. Mater.
,
21
(
19
), pp.
3715
3722
.10.1002/adfm.201100665
10.
Peng
,
Y.
,
Shang
,
J.
,
Liu
,
C.
,
Zhao
,
S.
,
Huang
,
C.
,
Bai
,
Y.
, and
Li
,
Y.
,
2023
, “
A Universal Replica Molding Strategy Based on Natural Bio-Templates for Fabrication of Robust Superhydrophobic Surfaces
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
660
, p.
130879
.10.1016/j.colsurfa.2022.130879
11.
Wang
,
Z.
,
Li
,
B.
,
Feng
,
X.
,
Jiao
,
Z.
,
Zhang
,
J.
,
Niu
,
S.
,
Han
,
Z.
, and
Ren
,
L.
,
2020
, “
Rapid Fabrication of Bio-Inspired Antireflection Film Replicating From Cicada Wings
,”
J. Bionic Eng.
,
17
(
1
), pp.
34
44
.10.1007/s42235-020-0001-z
12.
Fujii
,
T.
,
Aoki
,
Y.
, and
Habazaki
,
H.
,
2011
, “
Superhydrophobic Hierarchical Surfaces Fabricated by Anodizing of Oblique Angle Deposited Al-Nb Alloy Columnar Films
,”
Appl. Surf. Sci.
,
257
(
19
), pp.
8282
8288
.10.1016/j.apsusc.2011.01.044
13.
Kannarpady
,
G. K.
,
Khedir
,
K. R.
,
Ishihara
,
H.
,
Woo
,
J.
,
Oshin
,
O. D.
,
Trigwell
,
S.
,
Ryerson
,
C.
, and
Biris
,
A. S.
,
2011
, “
Controlled Growth of Self-Organized Hexagonal Arrays of Metallic Nanorods Using Template-Assisted Glancing Angle Deposition for Superhydrophobic Applications
,”
ACS Appl. Mater. Interfaces
,
3
(
7
), pp.
2332
2340
.10.1021/am200251n
14.
Lu
,
X.
,
Kim
,
S.
, and
Seo
,
S. J.
,
2017
, “
Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition
,”
J. Nanomater.
,
2017
, pp.
1
7
.10.1155/2017/8305439
15.
Taschuk
,
M. T.
,
Hawkeye
,
M. M.
, and
Brett
,
M. J.
,
2010
,
Glancing Angle Deposition
,
Elsevier
, Amsterdam, The Netherlands.
16.
Qu
,
C.
,
McNamara
,
S.
, and
Walsh
,
K.
,
2022
, “
Design of Sphere Seeds for Glancing Angle Deposition
,”
J. Vac. Sci. Technol. A
,
40
(
3
), p.
033413
.10.1116/6.0001770
17.
Qu
,
C.
,
Alphenaar
,
B.
,
McNamara
,
S.
, and
Walsh
,
K.
,
2021
, “
Design of Line Seeds for Glancing Angle Deposition
,”
J. Vac. Sci. Technol. A
,
39
(
4
), p.
043404
.10.1116/6.0000998
18.
Summers
,
M.
,
Djurfors
,
B.
, and
Brett
,
M.
,
2005
, “
Fabrication of Silicon Submicrometer Ribbons by Glancing Angle Deposition
,”
J. Microlithogr. Microfabr. Microsyst.
,
4
(
3
), pp.
3
7
.10.1117/1.2036991
19.
Qu
,
C.
,
Alphenaar
,
B.
,
McNamara
,
S.
, and
Walsh
,
K.
,
2020
, “
Fabrication of Nanoporous Membranes for Knudsen Pump Using Glancing Angle Deposition
,” IEEE 33rd International Conference on Micro Electro Mechanical Systems (
MEMS
),
IEEE
, Vancouver, BC, Canada, Jan. 18–22, pp.
936
939
.10.1109/MEMS46641.2020.9056171
20.
Qu
,
C.
,
Ratnayake
,
D.
,
Alphenaar
,
B.
,
McNamara
,
S.
, and
Walsh
,
K.
,
2020
, “
Fabrication of Nanochannels Using Glancing Angle Deposition With Line Seeds
,”
ASME
Paper No. MSEC2020-8450.10.1115/MSEC2020-8450
21.
Nuchuay
,
P.
,
Chaikeeree
,
T.
,
Horprathum
,
M.
,
Mungkung
,
N.
,
Kasayapanand
,
N.
,
Oros
,
C.
,
Limwichean
,
S.
, et al.,
2017
, “
Engineered Omnidirectional Antireflection ITO Nanorod Films With Super Hydrophobic Surface Via Glancing-Angle Ion-Assisted Electron-Beam Evaporation Deposition
,”
Curr. Appl. Phys.
,
17
(
2
), pp.
222
229
.10.1016/j.cap.2016.11.018
22.
Qu
,
C.
,
Alphenaar
,
B.
,
McNamara
,
S.
, and
Walsh
,
K.
,
2021
, “
Optimization of Ultra-High Aspect Ratio Nanostructures Fabricated Using Glancing Angle Deposition
,”
ASME
Paper No. MSEC2021-59847.10.1115/MSEC2021-59847
23.
Koishi
,
T.
,
Yasuoka
,
K.
,
Fujikawa
,
S.
,
Ebisuzaki
,
T.
, and
Xiao
,
C. Z.
,
2009
, “
Coexistence and Transition Between Cassie and Wenzel State on Pillared Hydrophobic Surface
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
21
), pp.
8435
8440
.10.1073/pnas.0902027106
You do not currently have access to this content.