Abstract

Bio-inspired, micro/nanotextured surfaces have a variety of applications including superhydrophobicity, self-cleaning, anti-icing, antibiofouling, and drag reduction. In this paper, a template-free and scalable roll coating process is studied for fabrication of micro/nanoscale topographies surfaces. These micro/nanoscale structures are generated with viscoelastic polymer nanocomposites and derived by controlling ribbing instabilities in forward roll coating. The relationship between process conditions and surface topography is studied in terms of shear rate, capillary number, and surface roughness parameters (e.g., Wenzel factor and the density of peaks). For a given shear rate, the sample roughness increased with a higher capillary number until a threshold point. Similarly, for a given capillary number, the roughness increased up to a threshold range associated with shear rate. A peak density coefficient (PDC) model is proposed to relate capillary number and shear rate to surface roughness. The optimum range of the shear rate and the capillary number was found to be 40–60 s−1 and 4.5 × 105–6 × 105, respectively. This resulted in a maximum Wenzel roughness factor of 1.91, a peak density of 3.94 × 104 (1/mm2), and a water contact angle (WCA) of 128 deg.

References

1.
Neinhuis
,
C.
, and
Barthlott
,
W.
,
1997
, “
Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces
,”
Ann. Bot.
,
79
(
6
), pp.
667
677
.10.1006/anbo.1997.0400
2.
Cao
,
L.
,
Jones
,
A. K.
,
Sikka
,
V. K.
,
Wu
,
J.
, and
Gao
,
D.
,
2009
, “
Anti-Icing Superhydrophobic Coatings
,”
Langmuir
,
25
(
21
), pp.
12444
12448
.10.1021/la902882b
3.
Sun
,
T.
,
Tan
,
H.
,
Han
,
D.
,
Fu
,
Q.
, and
Jiang
,
L.
,
2005
, “
No Platelet Can Adhere-Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces
,”
Small
,
1
(
10
), pp.
959
963
.10.1002/smll.200500095
4.
Sun
,
T.
,
Feng
,
L.
,
Gao
,
X.
, and
Jiang
,
L.
,
2005
, “
Bioinspired Surfaces With Special Wettability
,”
Acc. Chem. Res.
,
38
(
8
), pp.
644
652
.10.1021/ar040224c
5.
Vukusic
,
P.
, and
Sambles
,
J. R.
,
2003
, “
Photonic Structures in Biology
,”
Nature
,
424
(
6950
), pp.
852
855
.10.1038/nature01941
6.
Srinivasarao
,
M.
,
1999
, “
Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths
,”
Chem. Rev.
,
99
(
7
), pp.
1935
1962
.10.1021/cr970080y
7.
Mainwaring
,
D. E.
,
Nguyen
,
S. H.
,
Webb
,
H.
,
Jakubov
,
T.
,
Tobin
,
M.
,
Lamb
,
R. N.
,
Wu
,
A. H. F.
,
Marchant
,
R.
,
Crawford
,
R. J.
, and
Ivanova
,
E. P.
,
2016
, “
The Nature of Inherent Bactericidal Activity: Insights From the Nanotopology of Three Species of Dragonfly
,”
Nanoscale
,
8
(
12
), pp.
6527
6534
.10.1039/C5NR08542J
8.
Bhushan
,
B.
,
2012
, “
Adhesion of Multi-Level Hierarchical Attachment Systems in Gecko Feet
,”
J. Adhesion Sci. Technol.
,
21
(
12–13
), pp.
1213
1258
.10.1163/156856107782328353
9.
Gao
,
X.
, and
Jiang
,
L.
,
2004
, “
Water-Repellent Legs of Water Striders
,”
Nature
,
432
(
7013
), p.
36
.10.1038/432036a
10.
Liu
,
P.
,
Gao
,
Y.
,
Wang
,
F.
,
Yang
,
J.
,
Yu
,
X.
,
Zhang
,
W.
, and
Yang
,
L.
,
2017
, “
Superhydrophobic and Self-Cleaning Behavior of Portland Cement With Lotus-Leaf-Like Microstructure
,”
J. Clean. Prod.
,
156
, pp.
775
785
.10.1016/j.jclepro.2017.03.211
11.
Yang
,
J.
,
Long
,
F.
,
Wang
,
R.
,
Zhang
,
X.
,
Yang
,
Y.
,
Hu
,
W.
, and
Liu
,
L.
,
2021
, “
Design of Mechanical Robust Superhydrophobic Cu Coatings With Excellent Corrosion Resistance and Self-Cleaning Performance Inspired by Lotus Leaf
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
627
, p.
127154
.10.1016/j.colsurfa.2021.127154
12.
Law, K. Y.
,
2018
, “
Highly Wettable Slippery Surfaces: Self-Cleaning Effect and Mechanism
,”
Int. J. Wettability Sci. Technol.
,
1
, pp.
31
45
.https://www.oldcitypublishing.com/journals/ijwsthome/ijwst-issue-contents/ijwst-volume-1-number-1-2018/ijwst-1-1-p-31-45/
13.
Hwang
,
H. S.
,
Kim
,
N. H.
,
Lee
,
S. G.
,
Lee
,
D. Y.
,
Cho
,
K.
, and
Park
,
I.
,
2011
, “
Facile Fabrication of Transparent Superhydrophobic Surfaces by Spray Deposition
,”
ACS Appl. Mater. Interfaces
,
3
(
7
), pp.
2179
2183
.10.1021/am2004575
14.
Kato
,
S.
, and
Sato
,
A.
,
2012
, “
Micro/Nanotextured Polymer Coatings Fabricated by UV Curing-Induced Phase Separation: Creation of Superhydrophobic Surfaces
,”
J. Mater. Chem.
,
22
(
17
), pp.
8613
8621
.10.1039/c2jm16675e
15.
Zou
,
J.
,
Chen
,
H.
,
Chunder
,
A.
,
Yu
,
Y.
,
Huo
,
Q.
, and
Zhai
,
L.
,
2008
, “
Preparation of a Superhydrophobic and Conductive Nanocomposite Coating From a Carbon-Nanotube-Conjugated Block Copolymer Dispersion
,”
Adv. Mater.
,
20
(
17
), pp.
3337
3341
.10.1002/adma.200703094
16.
Lee
,
S.
,
Lee
,
J.
,
Park
,
J.
,
Choi
,
Y.
, and
Yong
,
K.
,
2012
, “
Resistive Switching WOx-Au Core-Shell Nanowires With Unexpected Nonwetting Stability Even When Submerged Under Water
,”
Adv. Mater.
,
24
(
18
), pp.
2418
2423
.10.1002/adma.201200068
17.
Zhu
,
L.
,
Xiu
,
Y.
,
Xu
,
J.
,
Tamirisa
,
P. A.
,
Hess
,
D. W.
, and
Wong
,
C. P.
,
2005
, “
Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated With Fluorocarbon
,”
Langmuir
,
21
(
24
), pp.
11208
11212
.10.1021/la051410+
18.
Liu
,
B.
,
He
,
Y.
,
Fan
,
Y.
, and
Wang
,
X.
,
2006
, “
Fabricating Super-Hydrophobie Lotus-Leaf-Like Surfaces Through Soft-Lithographic Imprinting
,”
Macromol. Rapid Commun.
,
27
(
21
), pp.
1859
1864
.10.1002/marc.200600492
19.
Park
,
S.-H.
,
Lee
,
S.
,
Moreira
,
D.
,
Bandaru
,
P. R.
,
Han
,
I.
, and
Yun
,
D.-J.
,
2015
, “
Bioinspired Superhydrophobic Surfaces, Fabricated Through Simple and Scalable Roll-to-Roll Processing
,”
Sci. Rep.
,
5
(
1
), p.
15430
.10.1038/srep15430
20.
Gurfinkel Castillo
,
M. E.
, and
Patera
,
A. T.
,
1997
, “
Three-Dimensional Ribbing Instability in Symmetric Forward-Roll Film-Coating Processes
,”
J. Fluid Mech.
,
335
, pp.
323
359
.10.1017/S0022112096004600
21.
Chong
,
Y. H.
,
Gaskell
,
P. H.
, and
Kapur
,
N.
,
2007
, “
Coating With Deformable Rolls: An Experimental Investigation of the Ribbing Instability
,”
Chem. Eng. Sci.
,
62
(
15
), pp.
4138
4145
.10.1016/j.ces.2007.04.029
22.
Bauman
,
T.
,
Sullivan
,
T.
, and
Middleman
,
S.
,
1982
, “
Ribbing Instability in Coating Flows: Effect of Polymer Additives
,”
Chem. Eng. Commun.
,
14
(
1–2
), pp.
35
46
.10.1080/00986448208911036
23.
Greener
,
J.
,
Sullivan
,
T.
,
Turner
,
B.
, and
Middleman
,
S.
,
1980
, “
Ribbing Instability of a Two-Roll Coater: Newtonian Fluids
,”
Chem. Eng. Commun.
,
5
(
1–4
), pp.
73
83
.10.1080/00986448008935954
24.
Yang
,
C. K.
,
Wong
,
D. S. H.
, and
Liu
,
T. J.
,
2004
, “
The Effects of Polymer Additives on the Operating Windows of Slot Coating
,”
Polym. Eng. Sci.
,
44
(
10
), pp.
1970
1976
.10.1002/pen.20200
25.
Bierwagen
,
G. P.
,
1992
, “
Film Coating Technologies and Adhesion
,”
Electrochim. Acta
,
37
(
9
), pp.
1471
1478
.10.1016/0013-4686(92)80092-Z
26.
Szczurek
,
E.
,
Dubar
,
M.
,
Deltombe
,
R.
,
Dubois
,
A.
, and
Dubar
,
L.
,
2009
, “
New Approach to the Evaluation of the Free Surface Position in Roll Coating
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3187
3197
.10.1016/j.jmatprotec.2008.07.025
27.
Cohu
,
O.
, and
Magnin
,
A.
,
1995
, “
Rheometry of paints With Regard to Roll Coating Process
,”
J. Rheol. (N.Y.N.Y)
,
39
(
4
), pp.
767
785
.10.1122/1.550656
28.
Brumm
,
P.
,
Sauer
,
H.
, and
Dörsam
,
E.
,
2019
, “
Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process
,”
Colloids Interfaces
,
3
(
1
), p.
37
.10.3390/colloids3010037
29.
Pudas
,
M.
,
Hagberg
,
J.
, and
Leppävuori
,
S.
,
2005
, “
Roller-Type Gravure Offset Printing of Conductive Inks for High-Resolution Printing on Ceramic Substrates
,”
Int. J. Electron.
,
92
(
5
), pp.
251
269
.10.1080/00207210500102930
30.
Zevallos
,
G. A.
,
Carvalho
,
M. S.
, and
Pasquali
,
M.
,
2005
, “
Forward Roll Coating Flows of Viscoelastic Liquids
,”
J. Nonnewton. Fluid Mech.
,
130
(
2–3
), pp.
96
109
.10.1016/j.jnnfm.2005.08.005
31.
Fields
,
R. J.
, and
Ashby
,
M. F.
,
1976
, “
Finger-Like Crack Growth in Solids and Liquids
,”
Philos. Mag.
,
33
(
1
), pp.
33
48
.10.1080/14786437608221089
32.
Grillet
,
A. M.
,
Lee
,
A. G.
, and
Shaqfeh
,
E. S. G.
,
1999
, “
Observations of Ribbing Instabilities in Elastic Fluid Flows With Gravity Stabilization
,”
J. Fluid Mech.
,
399
, pp.
49
83
.10.1017/S002211209900628X
33.
Yamamura
,
M.
,
2020
, “
Ribbing Instability of Newtonian Fluid Coated on a Topographic Surface
,”
J. Coat. Technol. Res.
,
17
(
6
), pp.
1447
1453
.10.1007/s11998-020-00375-8
34.
Lee
,
J. H.
,
Han
,
S. K.
,
Lee
,
J. S.
,
Jung
,
H. W.
, and
Hyun
,
J. C.
,
2010
, “
Ribbing Instability in Rigid and Deformable Forward Roll Coating Flows
,”
Korea Aust. Rheol. J.
,
22
(
1
), pp.
75
80
.https://www.semanticscholar.org/paper/Ribbinginstability-in-rigid-and-deformable-forward-Lee-Han/5ffee5e666b2b9289ac241e33a1281c908244aec
35.
Rosen
,
M.
, and
Vazquez
,
M.
,
2007
, “
Secondary Waves in Ribbing Instability
,”
AIP Conf. Proc.
, 913, p. 14.10.1063/1.2746717
36.
Coyle
,
D. J.
,
Macosko
,
C. W.
, and
Scriven
,
L. E.
,
1990
, “
Reverse Roll Coating of Non‐Newtonian Liquids
,”
J. Rheol. (N. Y. N. Y
),
34
(
5
), pp.
615
636
.10.1122/1.550145
37.
Varela López
,
F.
,
Pauchard
,
L.
,
Rosen
,
M.
, and
Rabaud
,
M.
,
2002
, “
Non-Newtonian Effects on Ribbing Instability Threshold
,”
J. Nonnewton. Fluid Mech.
,
103
(
2–3
), pp.
123
139
.10.1016/S0377-0257(01)00165-3
38.
Soules
,
D. A.
,
Fernando
,
R. H.
, and
Glass
,
J. E.
,
1988
, “
Dynamic Uniaxial Extensional Viscosity (DUEV) Effects in Roll Application I. Rib and Web Growth in Commercial Coatings
,”
J. Rheol. (N. Y. N. Y
),
32
(
2
), pp.
181
198
.10.1122/1.549966
39.
Coyle
,
D. J.
,
1997
, “
Knife and Roll Coating
,”
Liquid Film Coating
,
Springer
,
Dordrecht
, The Netherlands, pp.
539
571
.
40.
Shahsavar
,
A.
, and
Bahiraei
,
M.
,
2017
, “
Experimental Investigation and Modeling of Thermal Conductivity and Viscosity for Non-Newtonian Hybrid Nanofluid Containing Coated CNT/Fe3O Nanoparticles
,”
Powder Technol.
,
318
, pp.
441
450
.10.1016/j.powtec.2017.06.023
41.
Abbasi
,
S.
,
Zebarjad
,
S. M.
,
Baghban
,
S. H. N.
,
Youssefi
,
A.
, and
Ekrami-Kakhki
,
M.-S.
,
2016
, “
Experimental Investigation of the Rheological Behavior and Viscosity of Decorated Multi-Walled Carbon Nanotubes With TiO2 Nanoparticles/Water Nanofluids
,”
J. Therm. Anal. Calorim.
,
123
(
1
), pp.
81
89
.10.1007/s10973-015-4878-4
42.
Jo
,
B.
, and
Banerjee
,
D.
,
2014
, “
Viscosity Measurements of Multi-Walled Carbon Nanotubes-Based High Temperature Nanofluids
,”
Mater. Lett.
,
122
, pp.
212
215
.10.1016/j.matlet.2014.02.032
43.
Islam
,
D.
,
Perera
,
H.
,
Black
,
B.
,
Phillips
,
M.
,
Chen
,
M.-J.
,
Hodges
,
G.
,
Jackman
,
A.
, et al.,
2022
, “
Template-Free Scalable Fabrication of Linearly Periodic Microstructures by Controlling Ribbing Defects Phenomenon in Forward Roll Coating for Multifunctional Applications
,”
Adv. Mater. Interfaces
,
9
(
27
), p.
2201237
.10.1002/admi.202201237
You do not currently have access to this content.