Abstract

Atomic force microscope (AFM)-based nanolithography is a cost-effective nanopatterning technique that can fabricate nanostructures with arbitrary shapes. However, existing AFM-based nanopatterning approaches have limitations in the patterning resolution and efficiency. Minimum feature size and machining performance in the mechanical force-induced nanofabrication process are limited by the radius and sharpness of the AFM tip. Electric-field-assisted atomic force microscope (E-AFM) nanolithography can fabricate nanopatterns with features smaller than the tip radius, but it is very challenging to find the appropriate input parameter window. The tip bias range in E-AFM process is typically very small and varies for each AFM tip due to the variations in tip geometry, tip end diameter, and tip conductive coating thickness. This paper demonstrates a novel electric-field and mechanical vibration-assisted AFM-based nanofabrication approach, which enables high-resolution (sub-10 nm toward sub-5 nm) and high-efficiency nanopatterning processes. The integration of in-plane vibration with the electric field increases the patterning speed, broadens the selectable ranges of applied voltages, and reduces the minimum tip bias required for nanopatterning as compared with E-AFM process, which significantly increases the versatility and capability of AFM-based nanopatterning and effectively avoids the tip damage.

References

1.
Behzadirad
,
M.
,
Mecholdt
,
S.
,
Randall
,
J. N.
,
Ballard
,
J. B.
,
Owen
,
J.
,
Rishinaramangalam
,
A. K.
,
Reum
,
A.
,
Gotszalk
,
T.
,
Feezell
,
D. F.
,
Rangelow
,
I. W.
, and
Busani
,
T.
,
2021
, “
Advanced Scanning Probe Nanolithography Using GaN Nanowires
,”
Nano Lett.
,
21
(
13
), pp.
5493
5499
.10.1021/acs.nanolett.1c00127
2.
Chang
,
S.
,
Geng
,
Y.
, and
Yan
,
Y.
,
2022
, “
Tip-Based Nanomachining on Thin Films: A Mini Review
,”
Nanomanuf. Metrol.
,
5
(
1
), pp.
2
22
.10.1007/s41871-021-00115-5
3.
Gomez
,
J. L.
, and
Tigli
,
O.
,
2013
, “
Zinc oxide Nanostructures: From Growth to Application
,”
J. Mater. Sci
,
48
(
2
), pp.
612
624
.10.1007/s10853-012-6938-5
4.
Wang
,
J.
,
Yan
,
Y.
,
Li
,
Z.
, and
Geng
,
Y.
,
2021
, “
Towards understanding the Machining Mechanism of the Atomic Force Microscopy Tip-Based Nanomilling Process
,”
Int. J. Mach. Tools Manuf.
,
162
, p.
103701
.10.1016/j.ijmachtools.2021.103701
5.
Deng
,
J.
,
Jiang
,
L.
,
Si
,
B.
,
Zhou
,
H.
,
Dong
,
J.
, and
Cohen
,
P.
,
2021
, “
AFM-Based Nanofabrication and Quality Inspection of Three-Dimensional Nanotemplates for Soft Lithography
,”
J. Manuf. Process
,
66
, pp.
565
573
.10.1016/j.jmapro.2021.04.051
6.
Rühe
,
J.
,
2017
, “
And There Was Light: Prospects for the Creation of Micro- and Nanostructures Through Maskless Photolithography
,”
ACS Nano
,
11
(
9
), pp.
8537
8541
.10.1021/acsnano.7b05593
7.
Wang
,
K.
,
Ma
,
Q.
,
Qu
,
C.-X.
,
Zhou
,
H.-T.
,
Cao
,
M.
, and
Wang
,
S.-D.
,
2022
, “
Review on 3D Fabrication at Nanoscale
,”
Autex Res. J.
, epub.10.2478/aut-2022-0014
8.
Harinarayana
,
V.
, and
Shin
,
Y. C.
,
2021
, “
Two-Photon Lithography for Three-Dimensional Fabrication in Micro/Nanoscale Regime: A Comprehensive Review
,”
Opt. Laser Technol.
,
142
, p.
107180
.10.1016/j.optlastec.2021.107180
9.
Lee
,
J. A.
,
Lee
,
K.-C.
,
Park
,
S. I.
, and
Lee
,
S. S.
,
2008
, “
The fabrication of Carbon Nanostructures Using Electron Beam Resist Pyrolysis and Nanomachining Processes for Biosensing Applications
,”
Nanotechnology
,
19
(
21
), p.
215302
.10.1088/0957-4484/19/21/215302
10.
Pisano
,
F.
,
Pisanello
,
M.
,
Sileo
,
L.
,
Qualtieri
,
A.
,
Sabatini
,
B. L.
,
De Vittorio
,
M.
, and
Pisanello
,
F.
,
2018
, “
Focused ion Beam Nanomachining of Tapered Optical Fibers for Patterned Light Delivery
,”
Microelectron. Eng.
,
195
, pp.
41
49
.10.1016/j.mee.2018.03.023
11.
Duan
,
C.
,
Wang
,
W.
, and
Xie
,
Q.
,
2013
, “
Review article: Fabrication of Nanofluidic Devices
,”
Biomicrofluidics
,
7
(
2
), p.
026501
.10.1063/1.4794973
12.
Garcia
,
R.
,
Knoll
,
A. W.
, and
Riedo
,
E.
,
2014
, “
Advanced scanning Probe Lithography
,”
Nat. Nanotechnol.
,
9
(
8
), pp.
577
587
.10.1038/nnano.2014.157
13.
Kaestner
,
M.
,
Ivanov
,
T.
,
Schuh
,
A.
,
Ahmad
,
A.
,
Angelov
,
T.
,
Krivoshapkina
,
Y.
,
Budden
,
M.
,
Hofer
,
M.
,
Lenk
,
S.
,
Zoellner
,
J.-P.
,
Rangelow
,
I. W.
,
Reum
,
A.
,
Guliyev
,
E.
,
Holz
,
M.
, and
Nikolov
,
N.
,
2014
, “
Scanning probes in Nanostructure Fabrication
,”
J. Vac. Sci. Technol. B
,
32
(
6
), p.
06F101
.10.1116/1.4897500
14.
Ryu Cho
,
Y. K.
,
Rawlings
,
C. D.
,
Wolf
,
H.
,
Spieser
,
M.
,
Bisig
,
S.
,
Reidt
,
S.
,
Sousa
,
M.
,
Khanal
,
S. R.
,
Jacobs
,
T. D. B.
, and
Knoll
,
A. W.
,
2017
, “
Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography
,”
ACS Nano
,
11
(
12
), pp.
11890
11897
.10.1021/acsnano.7b06307
15.
Bark
,
H.
,
Kwon
,
S.
, and
Lee
,
C.
,
2016
, “
Bias-Assisted Atomic Force Microscope Nanolithography on NbS2thin Films Grown by Chemical Vapor Deposition
,”
J. Phys. Appl. Phys
,
49
(
48
), p.
484001
.10.1088/0022-3727/49/48/484001
16.
Liu
,
H.
,
Hoeppener
,
S.
, and
Schubert
,
U. S.
,
2016
, “
Reversible Nanopatterning on Polypyrrole Films by Atomic Force Microscope Electrochemical Lithography
,”
Adv. Funct. Mater.
,
26
(
4
), pp.
614
619
.10.1002/adfm.201503834
17.
Liu
,
L.
,
Shi
,
J.
,
Li
,
M.
,
Yu
,
P.
,
Yang
,
T.
, and
Li
,
G.
,
2018
, “
Fabrication of Sub-Micrometer-Sized MoS2 Thin-Film Transistor by Phase Mode AFM Lithography
,”
Small
,
14
(
49
), p.
1803273
.10.1002/smll.201803273
18.
Liu
,
X.
,
Howell
,
S. T.
,
Conde‐Rubio
,
A.
,
Boero
,
G.
, and
Brugger
,
J.
,
2020
, “
Thermomechanical Nanocutting of 2D Materials
,”
Adv. Mater.
,
32
(
31
), p.
2001232
.10.1002/adma.202001232
19.
Lyuksyutov
,
S. F.
,
Paramonov
,
P. B.
,
Dolog
,
I.
, and
Ralich
,
R. M.
,
2003
, “
Peculiarities of an Anomalous Electronic Current During Atomic Force Microscopy Assisted Nanolithography on n-Type Silicon
,”
Nanotechnology
,
14
(
7
), pp.
716
721
.10.1088/0957-4484/14/7/305
20.
Zhang
,
L.
,
Dong
,
J.
, and
Cohen
,
P. H.
,
2013
, “
Material-Insensitive Feature Depth Control and Machining Force Reduction by Ultrasonic Vibration in AFM-Based Nanomachining
,”
IEEE Trans. Nanotechnol.
,
12
(
5
), pp.
743
750
.10.1109/TNANO.2013.2273272
21.
Yao
,
B.
,
Chen
,
C.
,
Du
,
Z.
,
Qian
,
Q.
, and
Pan
,
L.
,
2022
, “
Surfing Scanning Probe Nanolithography at Meters per Second
,”
Nano Lett.
,
22
(
6
), pp.
2187
2193
.10.1021/acs.nanolett.1c03705
22.
Chen
,
Y.
,
Shu
,
Z.
,
Zhang
,
S.
,
Zeng
,
P.
,
Liang
,
H.
,
Zheng
,
M.
, and
Duan
,
H.
,
2021
, “
Sub-10 nm Fabrication: Methods and Applications
,”
Int. J. Extreme Manuf.
,
3
(
3
), p.
032002
.10.1088/2631-7990/ac087c
23.
Deng
,
J.
,
Dong
,
J.
, and
Cohen
,
P.
,
2018
, “
Rapid Fabrication and Characterization of SERS Substrates
,”
Procedia Manuf.
,
26
, pp.
580
586
.10.1016/j.promfg.2018.07.068
24.
Geng
,
Y.
,
Yan
,
Y.
,
Wang
,
J.
, and
Zhuang
,
Y.
,
2018
, “
Fabrication of Nanopatterns on Silicon Surface by Combining AFM-Based Scratching and RIE Methods
,”
Nanomanuf. Metrol.
,
1
, pp.
225
235
.10.1007/s41871-018-0024-9
25.
Xie
,
X. N.
,
Chung
,
H. J.
,
Sow
,
C. H.
, and
Wee
,
A. T. S.
,
2006
, “
Nanoscale Materials Patterning and Engineering by Atomic Force Microscopy Nanolithography
,”
Mater. Sci. Eng. R: Rep.
,
54
(
1–2
), pp.
1
48
.10.1016/j.mser.2006.10.001
26.
Hu
,
H.
,
Kim
,
H. J.
, and
Somnath
,
S.
,
2017
, “
Tip-Based Nanofabrication for Scalable Manufacturing
,”
Micromachines
,
8
(
3
), p.
90
.10.3390/mi8030090
27.
Garcia
,
R.
,
Martinez
,
R. V.
, and
Martinez
,
J.
,
2006
, “
Nano-Chemistry and Scanning Probe Nanolithographies
,”
Chem. Soc. Rev.
,
35
(
1
), pp.
29
38
.10.1039/B501599P
28.
Klehn
,
B.
, and
Kunze
,
U.
,
1999
, “
Nanolithography With an Atomic Force Microscope by Means of Vector-Scan Controlled Dynamic Plowing
,”
J. Appl. Phys.
,
85
(
7
), pp.
3897
3903
.10.1063/1.369761
29.
Fang
,
T. H.
, and
Chang
,
W. J.
,
2003
, “
Effects of AFM-Based Nanomachining Process on Aluminum Surface
,”
J. Phys. Chem. Solids
,
64
(
6
), pp.
913
918
.10.1016/S0022-3697(02)00436-5
30.
Wang
,
J.
,
Yan
,
Y.
,
Jia
,
B.
, and
Geng
,
Y.
,
2021
, “
Study on the Processing Outcomes of the Atomic Force Microscopy Tip-Based Nanoscratching on GaAs
,”
J. Manuf. Process
,
70
, pp.
238
247
.10.1016/j.jmapro.2021.08.033
31.
Deng
,
J.
,
Dong
,
J.
, and
Cohen
,
P. H.
,
2018
, “
Development and Characterization of Ultrasonic Vibration Assisted Nanomachining Process for Three-Dimensional Nanofabrication
,”
IEEE Trans. Nanotechnol.
,
17
(
3
), pp.
559
566
.10.1109/TNANO.2018.2826841
32.
Li
,
B.
,
Geng
,
Y.
, and
Yan
,
Y.
,
2020
, “
Nano/Microscale Thermal Field Distribution: Conducting Thermal Decomposition of Pyrolytic-Type Polymer by Heated AFM Probes
,”
Nanomaterials
,
10
(
3
), p.
483
.10.3390/nano10030483
33.
Chang
,
S.
,
Yan
,
Y.
,
Li
,
B.
, and
Geng
,
Y.
,
2021
, “
Nanoscale Manipulation of Materials Patterning Through Thermomechanical Nanolithography Using Atomic Force Microscopy
,”
Mater. Des.
,
202
, p.
109547
.10.1016/j.matdes.2021.109547
34.
Howell
,
S. T.
,
Grushina
,
A.
,
Holzner
,
F.
, and
Brugger
,
J.
,
2020
, “
Thermal Scanning Probe Lithography—a Review
,”
Microsyst. Nanoeng.
,
6
(
1
), pp.
1
24
.10.1038/s41378-019-0124-8
35.
Zhou
,
H.
,
Dmuchowski
,
C.
,
Ke
,
C.
, and
Deng
,
J.
,
2020
, “
External-Energy-Assisted Nanomachining With Low-Stiffness Atomic Force Microscopy Probes
,”
Manuf. Lett.
,
23
, pp.
1
4
.10.1016/j.mfglet.2019.11.001
36.
Ding
,
L.
,
Li
,
Y.
,
Chu
,
H.
,
Li
,
C.
,
Yang
,
Z.
,
Zhou
,
W.
, and
Tang
,
Z. K.
,
2007
, “
High Speed Atomic Force Microscope Lithography Driven by Electrostatic Interaction
,”
Appl. Phys. Lett.
,
91
(
2
), p.
023121
.10.1063/1.2756138
37.
Kaestner
,
M.
, and
Rangelow
,
I. W.
,
2020
, “
Scanning probe Lithography on Calixarene Towards Single-Digit Nanometer Fabrication
,”
Int. J. Extreme Manuf.
,
2
(
3
), p.
032005
.10.1088/2631-7990/aba2d8
38.
Ryu
,
Y. K.
, and
Garcia
,
R.
,
2017
, “
Advanced Oxidation Scanning Probe Lithography
,”
Nanotechnology
,
28
(
14
), p.
142003
.10.1088/1361-6528/aa5651
39.
Lyuksyutov
,
S. F.
,
Paramonov
,
P. B.
,
Juhl
,
S.
, and
Vaia
,
R. A.
,
2003
, “
Amplitude-Modulated Electrostatic Nanolithography in Polymers Based on Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
83
(
21
), pp.
4405
4407
.10.1063/1.1629787
40.
Zhou
,
H.
,
Jiang
,
Y.
,
Dmuchowski
,
C. M.
,
Ke
,
C.
, and
Deng
,
J.
,
2022
, “
Electric-Field-Assisted Contact Mode Atomic Force Microscope-Based Nanolithography With Low Stiffness Conductive Probes
,”
ASME J. Micro Nano-Manuf.
,
10
, p.
011001
.10.1115/1.4054316
41.
Yang
,
Y.
, and
Zhao
,
W.
,
2019
, “
Fabrication of Nanoscale to Microscale 2.5D Square Patterns on Metallic Films by the Coupling AFM Lithography
,”
J. Manuf. Process
,
46
, pp.
129
138
.10.1016/j.jmapro.2019.08.032
42.
Zhang
,
L.
, and
Dong
,
J.
,
2012
, “
High-Rate Tunable Ultrasonic Force Regulated Nanomachining Lithography With an Atomic Force Microscope
,”
Nanotechnology
,
23
(
8
), p.
085303
.10.1088/0957-4484/23/8/085303
You do not currently have access to this content.