Abstract

Three-dimensional bioprinting is a promising field in regenerating patient-specific tissues and organs due to its inherent capability of releasing biocompatible materials encapsulating living cells in a predefined location. Due to the diverse characteristics of tissues and organs in terms of microstructures and cell types, a multinozzle extrusion-based 3D bioprinting system has gained popularity. The investigations on interactions between various biomaterials and cell-to-material can provide relevant information about the scaffold geometry, cell viability, and proliferation. Natural hydrogels are frequently used in bioprinting materials because of their high-water content and biocompatibility. However, the dominancy of liquid characteristics of only-hydrogel materials makes the printing process challenging. Polycaprolactone (PCL) is the most frequently used synthetic biopolymer. It can provide mechanical integrity to achieve dimensionally accurate fabricated scaffolds, especially for hard tissues such as bone and cartilage scaffolds. In this paper, we explored various multimaterial bioprinting strategies with our recently proposed bio-inks and PCL intending to achieve dimensional accuracy and mechanical aspects. Various strategies were followed to coprint natural and synthetic biopolymers and interactions were analyzed between them. Printability of pure PCL with various molecular weights was optimized with respect to different process parameters such as nozzle temperature, printing pressure, printing speed, porosity, and bed temperature to coprint with natural hydrogels. The relationship between the rheological properties and shape fidelity of natural polymers was investigated with a set of printing strategies during coprinting with PCL. The successful application of this research can help achieve dimensionally accurate scaffolds.

References

1.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D.-H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
.10.1016/j.biotechadv.2015.12.011
2.
Zhang
,
Y. S.
,
Yue
,
K.
,
Aleman
,
J.
,
Mollazadeh-Moghaddam
,
K.
,
Bakht
,
S. M.
,
Yang
,
J.
,
Jia
,
W.
,
Dell'Erba
,
V.
,
Assawes
,
P.
,
Shin
,
S. R.
,
Dokmeci
,
M. R.
,
Oklu
,
R.
, and
Khademhosseini
,
A.
,
2017
, “
3D Bioprinting for Tissue and Organ Fabrication
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
148
163
.10.1007/s10439-016-1612-8
3.
Malda
,
J.
,
Visser
,
J.
,
Melchels
,
F. P.
,
Jüngst
,
T.
,
Hennink
,
W. E.
,
Dhert
,
W. J.
,
Groll
,
J.
, and
Hutmacher
,
D. W.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
.10.1002/adma.201302042
4.
Kirchmajer
,
D. M.
,
Gorkin
, III
,
R.
, and
in het Panhuis
,
M.
,
2015
, “
An Overview of the Suitability of Hydrogel-Forming Polymers for Extrusion-Based 3D-Printing
,”
J. Mater. Chem. B
,
3
(
20
), pp.
4105
4117
.10.1039/C5TB00393H
5.
Rastin
,
H.
,
Ormsby
,
R. T.
,
Atkins
,
G. J.
, and
Losic
,
D.
,
2020
, “
3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink With High Shape Integrity
,”
ACS Appl. Bio Mater.
,
3
(
3
), pp.
1815
1826
.10.1021/acsabm.0c00169
6.
She
,
Y.
,
Fan
,
Z.
,
Wang
,
L.
,
Li
,
Y.
,
Sun
,
W.
,
Tang
,
H.
,
Zhang
,
L.
,
Wu
,
L.
,
Zheng
,
H.
, and
Chen
,
C.
,
2021
, “
3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement
,”
Front. Cell Dev. Biol.
9
, p.
33
.10.3389/fcell.2021.629796
7.
Hutmacher
,
D. W.
,
Schantz
,
T.
,
Zein
,
I.
,
Ng
,
K. W.
,
Teoh
,
S. H.
, and
Tan
,
K. C.
,
2001
, “
Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated Via Fused Deposition Modeling
,”
J. Biomed. Mater. Res., Part A
,
55
(
2
), pp.
203
216
.10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
8.
Olubamiji
,
A. D.
,
Izadifar
,
Z.
,
Si
,
J. L.
,
Cooper
,
D. M.
,
Eames
,
B. F.
, and
Chen
,
D. X.
,
2016
, “
Modulating Mechanical Behaviour of 3D-Printed Cartilage-Mimetic PCL Scaffolds: Influence of Molecular Weight and Pore Geometry
,”
Biofabrication
,
8
(
2
), p.
025020
.10.1088/1758-5090/8/2/025020
9.
Mondal
,
D.
,
Griffith
,
M.
, and
Venkatraman
,
S. S.
,
2016
, “
Polycaprolactone-Based Biomaterials for Tissue Engineering and Drug Delivery: Current Scenario and Challenges
,”
Int. J. Polym. Mater. Polym. Biomater.
,
65
(
5
), pp.
255
265
.10.1080/00914037.2015.1103241
10.
Raucci
,
M.
,
D'Antò
,
V.
,
Guarino
,
V.
,
Sardella
,
E.
,
Zeppetelli
,
S.
,
Favia
,
P.
, and
Ambrosio
,
L.
,
2010
, “
Biomineralized Porous Composite Scaffolds Prepared by Chemical Synthesis for Bone Tissue Regeneration
,”
Acta Biomater.
,
6
(
10
), pp.
4090
4099
.10.1016/j.actbio.2010.04.018
11.
Ramasamy
,
S.
,
Davoodi
,
P.
,
Vijayavenkataraman
,
S.
,
Teoh
,
J. H.
,
Thamizhchelvan
,
A. M.
,
Robinson
,
K. S.
,
Wu
,
B.
,
Fuh
,
J. Y.
,
DiColandrea
,
T.
,
Zhao
,
H.
,
Lane
,
E. B.
, and
Wang
,
C.-H.
,
2021
, “
Optimized Construction of a Full Thickness Human Skin Equivalent Using 3D Bioprinting and a PCL/Collagen Dermal Scaffold
,”
Bioprinting
,
21
, p.
e00123
.10.1016/j.bprint.2020.e00123
12.
Kim
,
Y. B.
,
Lee
,
H.
,
Yang
,
G.-H.
,
Choi
,
C. H.
,
Lee
,
D.
,
Hwang
,
H.
,
Jung
,
W.-K.
,
Yoon
,
H.
, and
Kim
,
G. H.
,
2016
, “
Mechanically Reinforced Cell-Laden Scaffolds Formed Using Alginate-Based Bioink Printed Onto the Surface of a PCL/Alginate Mesh Structure for Regeneration of Hard Tissue
,”
J. Colloid Interface Sci.
,
461
, pp.
359
368
.10.1016/j.jcis.2015.09.044
13.
Ruiz-Cantu
,
L.
,
Gleadall
,
A.
,
Faris
,
C.
,
Segal
,
J.
,
Shakesheff
,
K.
, and
Yang
,
J.
,
2020
, “
Multi-Material 3D Bioprinting of Porous Constructs for Cartilage Regeneration
,”
Mater. Sci. Eng.: C
,
109
, p.
110578
.10.1016/j.msec.2019.110578
14.
Zimmerling
,
A.
,
Yazdanpanah
,
Z.
,
Cooper
,
D. M.
,
Johnston
,
J. D.
, and
Chen
,
X.
,
2021
, “
3D Printing PCL/nHA Bone Scaffolds: Exploring the Influence of Material Synthesis Techniques
,”
Biomater. Res.
,
25
(
1
), pp.
1
12
.10.1186/s40824-021-00204-y
15.
Koch
,
F.
,
Thaden
,
O.
,
Conrad
,
S.
,
Tröndle
,
K.
,
Finkenzeller
,
G.
,
Zengerle
,
R.
,
Kartmann
,
S.
,
Zimmermann
,
S.
, and
Koltay
,
P.
,
2022
, “
Mechanical Properties of Polycaprolactone (PCL) Scaffolds for Hybrid 3D-Bioprinting With Alginate-Gelatin Hydrogel
,”
J. Mech. Behav. Biomed. Mater.
,
130
, p.
105219
.10.1016/j.jmbbm.2022.105219
16.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
.10.3390/ma11030454
17.
Habib
,
M. A.
, and
Khoda
,
B.
,
2018
, “
Development of Clay Based Novel Bio-Ink for 3D Bio-Printing Process
,”
Procedia Manuf.
,
26
, pp.
846
856
.10.1016/j.promfg.2018.07.105
18.
Habib
,
M.
, and
Khoda
,
B.
,
2020
, “
Fiber Filled Hybrid Hydrogel for Bio-Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), pp.
1
38
.10.1115/MSEC2020-8294
19.
Habib
,
A.
, and
Khoda
,
B.
,
2018
, “
Assessing Printability of Alginate-Carboxymethyl Cellulose Hydrogels
,”
Annual Conference of Institute of Industrial and Systems Engineers
, Orlando, FL, p.
1120
.
20.
Hamid
,
O. A.
,
Eltaher
,
H. M.
,
Sottile
,
V.
, and
Yang
,
J.
,
2021
, “
3D Bioprinting of a Stem Cell-Laden, Multi-Material Tubular Composite: An Approach for Spinal Cord Repair
,”
Mater. Sci. Eng.: C
,
120
, p.
111707
.10.1016/j.msec.2020.111707
21.
Nelson
,
C.
,
Tuladhar
,
S.
, and
Habib
,
M. A.
,
2021
, “
Designing an Interchangeable Multi-Material Nozzle System for 3D Bioprinting Process
,”
ASME
Paper No. MSEC2021-63471.10.1115/MSEC2021-63471
22.
Narayanan
,
L. K.
,
Huebner
,
P.
,
Fisher
,
M. B.
,
Spang
,
J. T.
,
Starly
,
B.
, and
Shirwaiker
,
R. A.
,
2016
, “
3D-Bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1732
1742
.10.1021/acsbiomaterials.6b00196
23.
Arcaute
,
K.
,
Mann
,
B.
, and
Wicker
,
R.
,
2010
, “
Stereolithography of Spatially Controlled Multi-Material Bioactive Poly(Ethylene Glycol) Scaffolds
,”
Acta Biomater.
,
6
(
3
), pp.
1047
1054
.10.1016/j.actbio.2009.08.017
24.
Wang
,
F.
,
Tankus
,
E. B.
,
Santarella
,
F.
,
Rohr
,
N.
,
Sharma
,
N.
,
Märtin
,
S.
,
Michalscheck
,
M.
,
Maintz
,
M.
,
Cao
,
S.
, and
Thieringer
,
F. M.
,
2022
, “
Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering
,”
Polymers
,
14
(
4
), p.
669
.10.3390/polym14040669
25.
Li
,
H.
,
Tan
,
Y. J.
,
Leong
,
K. F.
, and
Li
,
L.
,
2017
, “
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel With Strong Interface Bonding
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20086
20097
.10.1021/acsami.7b04216
26.
Han
,
Y.
, and
Wang
,
L.
,
2017
, “
Sodium Alginate/Carboxymethyl Cellulose Films Containing Pyrogallic Acid: Physical and Antibacterial Properties
,”
J. Sci. Food Agric.
,
97
(
4
), pp.
1295
1301
.10.1002/jsfa.7863
27.
Nelson
,
C.
,
Tuladhar
,
S.
,
Launen
,
L.
, and
Habib
,
M.
,
2021
, “
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels
,”
Int. J. Mol. Sci.
,
22
(
24
), p.
13481
.10.3390/ijms222413481
28.
Ribeiro
,
A.
,
Blokzijl
,
M. M.
,
Levato
,
R.
,
Visser
,
C. W.
,
Castilho
,
M.
,
Hennink
,
W. E.
,
Vermonden
,
T.
, and
Malda
,
J.
,
2017
, “
Assessing Bioink Shape Fidelity to Aid Material Development in 3D Bioprinting
,”
Biofabrication
,
10
(
1
), p.
014102
.10.1088/1758-5090/aa90e2
29.
Kopač
,
T.
,
Ručigaj
,
A.
, and
Krajnc
,
M.
,
2022
, “
Effect of Polymer-Polymer Interactions on the Flow Behavior of Some Polysaccharide-Based Hydrogel Blends
,”
Carbohydr. Polym.
,
287
, p.
119352
.10.1016/j.carbpol.2022.119352
30.
Habib
,
M. A.
, and
Khoda
,
B.
,
2022
, “
Rheological Analysis of Bio-Ink for 3D Bio-Printing Processes
,”
J. Manuf. Processes
,
76
, pp.
708
718
.10.1016/j.jmapro.2022.02.048
You do not currently have access to this content.