Abstract

The laser irradiance-based surface structural growth on Si and Ge has been correlated first time with plasma parameters. The better control over plasma parameters makes manufacturing of various sized and shaped surface structures on the semiconducting materials. The effect of laser irradiances on surface morphology of Si and Ge has been explored. For this purpose, Nd: YAG laser (532 nm, 6 ns, 10 Hz) has been employed as an irradiation source at the various laser irradiances ranging from 4 to 7.1 GW/cm2 under the vacuum condition. Surface modifications of laser-ablated Si and Ge were analyzed by performing scanning electron microscope (SEM) analysis. It has been revealed that laser irradiance plays a significant role in the growth of the micro- and nanostructures on the laser-irradiated target surfaces. The surface morphology of laser-ablated Si and Ge exhibited the formation of various structures such as laser-induced periodic surface structures (LIPSS), cracks, spikes, ridges, and cones. Density and size of these structures have been found to be strongly dependent upon the laser irradiances. SEM analysis exhibits the cones formation at central ablated region of both Si and Ge. These cones become more distinct and pronounced with increasing the laser irradiance due to more energy deposition with Gaussian profile distribution at the central region. Microspikes were observed at boundaries of laser-ablated Si. Whereas, in case of Ge-ablated boundaries, wave-like ridges have been observed, which are then converted into globules at higher laser irradiances up to 7 GWcm−2. LIPSSs were seen at outer boundaries of laser-ablated Ge, whose periodicity varies with the laser irradiances. Faraday cup has been employed in order to probe the kinetic energy and density of laser-induced Si and Ge plasma ions at the similar values of laser irradiances. A correlation at similar values of laser irradiances has been established between the evaluated plasma ion parameters (kinetic energy and density of plasma ions) and observed structures for both materials. This correlation reveals the dependence of kinetic energy and density of plasma ions on the corresponding surface modification of both laser-ablated Si and Ge, as well as enables us for the better understanding of the laser-induced plasma to be used as ion source in various fields ion implantation, surface structuring, and material modification. The results of ion energies are explained by the generation of ambipolar field or self-generated electric field (SGEF) in the expanding plasma due to the charge separation and double-layer structure. The values of SGEF have also been evaluated at different laser irradiances.

References

1.
Ashkenasi
,
D.
,
Varel
,
H.
,
Rosenfeld
,
A.
,
Noack
,
F.
, and
Campbell
,
E. E. B.
,
1996
, “
Pulse-Width Influence on the Laser-Induced Structuring of CaF 2 (111)
,”
Appl. Phys. A
,
63
(
2
), pp.
103
107
.10.1007/BF01567636
2.
Lv
,
J.
,
Zhang
,
T.
,
Zhang
,
P.
,
Zhao
,
Y.
, and
Li
,
S.
,
2018
, “
Review Application of Nanostructured Black Silicon
,”
Nanoscale Res. Lett
, (
1
), p.
110
.10.1186/s11671-018-2523-4
3.
Sanz
,
M.
,
Rebollar
,
E.
,
Ganeev
,
R. A.
, and
Castillejo
,
M.
,
2013
, “
Nanosecond Laser-Induced Periodic Surface Structures on Wide Band-Gap Semiconductors
,”
Appl. Surf. Sci.
,
278
, pp.
325
329
.10.1016/j.apsusc.2012.11.137
4.
Medvid
,
A.
,
Onufrijevs
,
P.
,
Jarimaviciute-Gudaitiene
,
R.
,
Dauksta
,
E.
, and
Prosycevas
,
I.
,
2013
, “
Formation Mechanisms of Nano and Microcones by Laser Radiation on Surfaces of Si, Ge, and SiGe Crystals
,”
Nanoscale Res. Lett
, (
1
), p.
264
.10.1186/1556-276X-8-264
5.
Skantzakis
,
E.
,
Zorba
,
V.
,
Papazoglou
,
D. G.
,
Zergioti
,
I.
, and
Fotakis
,
C.
,
2006
, “
Ultraviolet Laser Microstructuring of Silicon and the Effect of Laser Pulse Duration on the Surface Morphology
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4462
4466
.10.1016/j.apsusc.2005.07.120
6.
Wu
,
D.
,
Sun
,
L.
,
Liu
,
J.
,
Yu
,
X.
,
Hai
,
R.
,
Feng
,
C.
,
Wang
,
Z.
, and
Ding
,
H.
,
2019
, “
Dynamics of Prompt Electrons, Ions, and Neutrals of Nanosecond Laser Ablation of Tungsten Investigated Using Optical Emission
,”
Phys. Plasmas
,
26
(
1
), p.
013303
.10.1063/1.5081969
7.
Hohreiter
,
V.
,
Carranza
,
J. E.
, and
Hahn
,
D. W.
,
2004
, “
Temporal Analysis of Laser-Induced Plasma Properties as Related to Laser-Induced Breakdown Spectroscopy
,”
Spectrochim. Acta B
,
59
(
3
), pp.
327
333
.10.1016/j.sab.2003.12.015
8.
Manova
,
D.
, and
Mändl
,
S.
,
2019
, “
Dynamic Measurements of Optical Emission During Plasma Immersion Ion Implantation
,”
Surf. Coat. Tech.
,,
365
, pp.
94
101
.10.1016/j.surfcoat.2018.05.027
9.
Asibu
,
E. K.
,
2009
,
Principles of Laser Materials Processing
, Vol.
4
,
Wiley
, Hoboken, NJ.
10.
Campanella
,
B.
,
Legnaioli
,
S.
,
Pagnotta
,
S.
,
Poggialini
,
F.
, and
Palleschi
,
V.
,
2019
, “
Shock Waves in Laser-Induced Plasmas
,”
Atoms
, 7(2), p.
57
.10.3390/atoms7020057
11.
Pereira
,
A.
,
Delaporte
,
P.
,
Sentis
,
M.
,
Marine
,
W.
,
Thomann
,
A. L.
, and
Boulmer-Leborgne
,
C.
,
2005
, “
Optical and Morphological Investigation of Backward-Deposited Layer Induced by Laser Ablation of Steel in Ambient Air
,”
J. Appl. Phys.
,
98
(
6
), p.
064902
.10.1063/1.2058193
12.
Akram
,
M.
,
Bashir
,
S.
,
Hayat
,
A.
,
Mahmood
,
K.
,
Ahmad
,
R.
, and
Khaleeq-U-Rahaman
,
M.
,
2014
, “
Effect of Laser Irradiance on the Surface Morphology and Laser Induced Plasma Parameters of Zinc
,”
Laser Part. Beams
,
32
(
1
), pp.
119
128
.10.1017/S026303461300102X
13.
Prokůpek
,
J.
,
Kaufman
,
J.
,
Margarone
,
D.
,
Krůs
,
M.
,
Velyhan
,
A.
,
Krása
,
J.
,
Burris-Mog
,
T.
,
Busold
,
S.
,
Deppert
,
O.
,
Cowan
,
T. E.
, and
Korn
,
G.
,
2014
, “
Development and First Experimental Tests of Faraday Cup Array
,”
Rev. Sci. Instrum.
,
85
(
1
), p.
013302
.10.1063/1.4859496
14.
Hopwood
,
J.
,
Guarnieri
,
C. R.
,
Whitehair
,
S. J.
, and
Cuomo
,
J. J.
,
1993
, “
Langmuir Probe Measurements of a Radio Frequency Induction Plasma
,”
J. Laser Micro/Nanoeng.
,
11
(
1
), pp.
152
156
.10.1116/1.578282
15.
Bauer
,
W.
, and
Perram
,
G.
,
2018
, “
Laser Ablated Ti Velocity Distribution Dynamics
,”
J. Opt. Soc. Am. B
,
35
(
10
), pp.
B27
B37
.10.1364/JOSAB.35.000B27
16.
Wainwright
,
E. R.
,
Dean
,
S. W.
,
De Lucia
,
F. C.
,
Weihs
,
T. P.
, and
Gottfried
,
J. L.
,
2020
, “
Effect of Sample Morphology on the Spectral and Spatiotemporal Characteristics of Laser-Induced Plasmas From Aluminum
,”
Appl. Phys. A
,
126
(
2
), p.
83
.10.1007/s00339-019-3201-9
17.
Petzoldt
,
S.
,
Reif
,
J.
, and
Matthias
,
E.
,
1996
, “
Laser Plasma Threshold of Metals
,”
Appl. Surf. Sci.
,
96–98
, pp.
199
204
.10.1016/0169-4332(95)00480-7
18.
Ahmad
,
H.
,
Bashir
,
S.
,
Hayat
,
A.
,
Mahmood
,
K.
,
Batool
,
A.
, and
Hussain
,
F.
,
2020
, “
Investigation of Energy and Density of Laser-Ablated Si and Ge Plasma Ions Along With Surface Modifications
,”
IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc.
,
48
(
12
), pp.
4191
4203
.10.1109/TPS.2020.3035882
19.
Farid
,
N.
,
Harilal
,
S. S.
,
Ding
,
H.
, and
Hassanein
,
A.
,
2013
, “
Kinetics of Ion and Prompt Electron Emission From Laser-Produced Plasma
,”
J. Plasma Phys
,
20
(
7
), p.
073114
.10.1063/1.4816710
20.
Hayat
,
A.
,
Bashir
,
S.
,
Akram
,
M.
,
Mahmood
,
K.
, and
Iqbal
,
M. S.
,
2015
, “
Surface and Morphological Features of Laser-Irradiated Silicon Under Vacuum, Nitrogen and Ethanol
,”
Appl. Surf. Sci.
,
357
, pp.
2415
2425
.10.1016/j.apsusc.2015.10.008
21.
Bashir
,
S.
,
Farid
,
N.
,
Mahmood
,
K.
, and
Rafique
,
M. S.
,
2012
, “
Influence of Ambient Gas and Its Pressure on the Laser-Induced Breakdown Spectroscopy and the Surface Morphology of Laser-Ablated Cd
,”
Appl. Phys. A
,
107
(
1
), pp.
203
212
.10.1007/s00339-011-6730-4
22.
Zehra
,
K.
,
Bashir
,
S.
,
Hassan
,
S. A.
,
Hayat
,
A.
, and
Akram
,
M.
,
2018
, “
Spectroscopic and Morphological Investigation of Laser Ablated Silicon at Various Laser Fluences
,”
Optik
,
164
, pp.
186
200
.10.1016/j.ijleo.2018.03.016
23.
Yaseen
,
N.
,
Bashir
,
S.
,
Shabbir
,
M. K.
,
Jalil
,
S. A.
,
Akram
,
M.
,
Hayat
,
A.
,
Mahmood
,
K.
,
Haq
,
F.
,
Ahmad
,
R.
, and
Hussain
,
T.
,
2016
, “
Nanosecond Pulsed Laser Ablation of Ge Investigated by Employing Photoacoustic Deflection Technique and SEM Analysis
,”
Phys. B Condens. Matter.
,
490
, pp.
31
41
.10.1016/j.physb.2016.03.005
24.
Hayat
,
A.
,
Bashir
,
S.
,
Strickland
,
D.
,
Rafique
,
M. S.
,
Wales
,
B.
,
Al-Tuairqi
,
S.
, and
Sanderson
,
J. H.
,
2019
, “
The Role of Laser Fluence and Ambient Environments on Femtosecond Laser Induced Breakdown Spectroscopy and on Surface Morphology of Mg and Zr
,”
J. Appl. Phys.
,
125
(
8
), p.
083302
.10.1063/1.5063897
25.
Desarkar
,
H. S.
,
Kumbhakar
,
P.
, and
Mitra
,
A. K.
,
2012
, “
Effect of Ablation Time and Laser Fluence on the Optical Properties of Copper Nano Colloids Prepared by Laser Ablation Technique
,”
Appl. Nanosci.
,
2
(
3
), pp.
285
291
.10.1007/s13204-012-0106-8
26.
Abdelhamid
,
M.
,
Grassini
,
S.
,
Angelini
,
E.
, and
Harith
,
M. A.
,
2009
, “
Effect of Changing Laser Irradiance on the Laser Induced Plasma Parameters for Au/Cu Layered Target
,”
AIP The 7th International Conference on Laser Applications ICLA 2009
, Cairo, Egypt, May 17–21, pp. 70–75
.10.1063/1.3250127
27.
Fikry
,
M.
,
Tawfik
,
W.
, and
Omar
,
M. M.
,
2020
, “
Investigation on the Effects of Laser Parameters on the Plasma Profile of Copper Using Picosecond Laser Induced Plasma Spectroscopy
,”
Opt. Quant. Electron
, 52(
5
), pp.
1
16
.10.1007/s11082-020-02381-x
28.
Stafe
,
M.
,
Vladoiu
,
I.
,
Negutu
,
C.
, and
Popescu
,
I. M.
,
2008
, “
Effect of Laser Fluence on the Ablation Rate of Metals in the Infrared, Visible, and Ultraviolet Nanosecond Pulses Irradiation Regime
,”
27th International Congress on Laser Materials Processing
, Laser Microprocessing and Nanomanufacturing ICALEO 2008, CA, Oct. 20–23, p. 130
.10.2351/1.5061437
29.
Kumar
,
N.
,
Dash
,
S.
,
Tyagi
,
A. K.
, and
Raj
,
B.
,
2010
, “
Dynamics of Plasma Expansion in the Pulsed Laser Material Interaction
,”
Sadhana
,
35
(
4
), pp.
493
511
.10.1007/s12046-010-0032-y
30.
Rodríguez-Hernández
,
P. E.
,
Quiñones-Galván
,
J. G.
,
Meléndez-Lira
,
M.
,
Santos-Cruz
,
J.
,
Contreras-Puente
,
G.
, and
de Moure-Flores
,
F.
,
2020
, “
Effect of Laser Fluence on Structural and Optical Properties of CuxS Films Grown by Pulsed Laser Deposition at Different Wavelengths
,”
Mater. Res. Express
,
7
(
1
), p.
015908
.10.1088/2053-1591/ab663d
31.
Tokarev
,
V. N.
,
2006
, “
Viscous Liquid Expulsion in Nanosecond UV Laser Ablation: From “Clean” Ablation to Nanostructures
,”
Laser Phys.
,
16
(
9
), pp.
1291
1307
.10.1134/S1054660X06090027
32.
Körner
,
C.
,
Mayerhofer
,
R.
,
Hartmann
,
M.
, and
Bergmann
,
H. W.
,
1996
, “
Physical and Material Aspects in Using Visible Laser Pulses of Nanosecond Duration for Ablation
,”
Appl. Phys. A
,
63
(
2
), pp.
123
131
.10.1007/BF01567639
33.
Sallé
,
B.
,
Chaléard
,
C.
,
Detalle
,
V.
,
Lacour
,
J. L.
,
Mauchien
,
P.
,
Nouvellon
,
C.
, and
Semerok
,
A.
,
1999
, “
Laser Ablation Efficiency of Metal Samples With UV Laser Nanosecond Pulses
,”
Appl. Surf. Sci.
,
138–139
, pp.
302
305
.10.1016/S0169-4332(98)00495-4
34.
Iqbal
,
M. H.
,
Bashir
,
S.
,
Rafique
,
M. S.
,
Dawood
,
A.
,
Akram
,
M.
,
Mahmood
,
K.
,
Hayat
,
A.
,
Ahmad
,
R.
,
Hussain
,
T.
, and
Mahmood
,
A.
,
2015
, “
Pulsed Laser Ablation of Germanium Under Vacuum and Hydrogen Environments at Various Fluences
,”
Appl. Surf. Sci.
,
344
, pp.
146
158
.10.1016/j.apsusc.2015.03.117
35.
Arkhipov
,
A. V.
,
Gabdullin
,
P. G.
, and
Mishin
,
M. V.
,
2015
, “
Orbitron-Type Vacuum Gauge With Nanocarbon Field Cathode
,”
St. Petersburg Polytech. Univ. J. Phys. Math.
,
1
(
1
), pp.
63
67
.10.1016/j.spjpm.2015.03.001
36.
Bleiner
,
D.
, and
Bogaerts
,
A.
,
2006
, “
Multiplicity and Contiguity of Ablation Mechanisms in Laser-Assisted Analytical Micro-Sampling
,”
Spectrochim. Acta. B
,
61
(
4
), pp.
421
432
.10.1016/j.sab.2006.02.007
37.
Mansour
,
N.
,
Jamshidi-Ghaleh
,
K.
, and
Ashkenasi
,
D.
,
2006
, “
Formation of Conical Microstructures of Silicon With Picosecond Laser Pulses in Air
,”
J. Laser Micro/Nanoeng.
,
1
(
1
), pp.
12
16
.10.2961/jlmn.2006.01.0003
38.
Umm-i-Kalsoom
,
S.
,
Bashir
,
Shazia
,
N.
,
Ali
,
M.
,
Akram
,
M.
,
Mahmood
,
K.
, and
Ahmad
,
R.
,
2012
, “
Effect of Ambient Environment on Excimer Laser Induced Micro and Nano-Structuring of Stainless Steel
,”
Appl. Surf. Sci.
, 261, pp.
101
109
.10.1016/j.apsusc.2012.07.107
39.
Bashir
,
S.
,
Khurshid
,
S.
,
Akram
,
M.
,
Ali
,
N.
,
Ahmad
,
S.
, and
Yousaf
,
Y.
,
2015
, “
Pulsed Laser Ablation of Ni in Vacuum and N2 Atmosphere at Various Fluences
,”
Quant. Electron.
,
45
(
7
), pp.
640
647
.10.1070/QE2015v045n07ABEH015570
40.
Her
,
T. H.
,
Finlay
,
R. J.
,
Wu
,
C.
,
Deliwala
,
S.
, and
Mazur
,
E.
,
1998
, “
Microstructuring of Silicon With Femtosecond Laser Pulses
,”
Appl. Phys. Lett.
,
73
(
12
), pp.
1673
1675
.10.1063/1.122241
41.
Khan
,
S.
,
Bashir
,
A.
,
Hayat
,
M.
, and
Khaleeq-ur-Rahman
,
M.
, and
Faizan-ul-Haq
,
2013
, “
Laser-Induced Breakdown Spectroscopy of Tantalum Plasma
,”
Phys. Plasmas
, (
7
), p.
073104
.10.1063/1.4812451
42.
Taylor
,
R.
,
Hnatovsky
,
C.
, and
Simova
,
E.
,
2008
, “
Applications of Femtosecond Laser Induced Self‐Organized Planar Nanocracks Inside Fused Silica Glass
,”
Laser Photonics Rev
,
2
(
1–2
), pp.
26
46
.10.1002/lpor.200710031
43.
Sarfraz
,
S. M. A.
,
Bashir
,
S.
,
Mahmood
,
K.
,
Khaliq
,
A.
, and
Rizvi
,
R.
,
2019
, “
Fluence-Dependent Sputtering Yield Measurement, Surface Morphology, Crater Depth, and Hardness of Laser-Irradiated Zr in N2 and Ne Environments
,”
Josa B
,
36
(
7
), pp.
1945
1957
.10.1364/JOSAB.36.001945
44.
Chandrasekhar
,
S.
,
2013
,
Hydrodynamic and Hydromagnetic Stability
,
Courier Corporation
, Chelmsford, MA.
45.
Lu
,
Y. F.
,
Yu
,
J. J.
, and
Choi
,
W. K.
,
1997
, “
Theoretical Analysis of Laser-Induced Periodic Structures at Silicon- Dioxide/Silicon and Silicon-Dioxide/Aluminum Interfaces
,”
Appl. Phys. Lett.
,
71
(
23
), pp.
3439
3440
.10.1063/1.120359
46.
Liu
,
Y.
,
Jiang
,
M. Q.
,
Yang
,
G. W.
,
Guan
,
Y. J.
, and
Dai
,
L. H.
,
2011
, “
Surface Rippling on Bulk Metallic Glass Under Nanosecond Pulse Laser Ablation
,”
Appl. Phys. Lett
,
99
(
19
), p.
191902
.10.1063/1.3656700
47.
Dolgaev
,
S. I.
,
Lavrishev
,
S. V.
,
Lyalin
,
A. A.
,
Simakin
,
A. V.
,
Voronov
,
V. V.
, and
Shafeev
,
G. A.
,
2001
, “
Formation of Conical Microstructures Upon Laser Evaporation of Solids
,”
Appl. Phys. A
,
73
(
2
), pp.
177
181
.10.1007/s003390100530
48.
Medvid
,
A.
, and
Onufrijevs
,
P.
,
2011
, “
Nano‐Cones Formed on a Surface of Semiconductors by Laser Radiation: Technology, Model and Properties
,”
AIP 30th International Conference on the Physics of Semiconductors, AIP PHYSICS OF SEMICONDUCTORS
, Seoul, South Korea, July 25–30
, p. 259
.10.1063/1.3666353
49.
Li
,
J.
,
Li
,
G.
,
Hu
,
Y.
,
Zhang
,
C.
,
Li
,
X.
,
Chu
,
J.
, and
Huang
,
W.
,
2015
, “
Selective Display of Multiple Patterns Encoded With Different Oriented Ripples Using Femtosecond Laser
,”
Opt. Laser Technol.
,
71
, pp.
85
88
.10.1016/j.optlastec.2015.02.014
50.
Parmar
,
V.
, and
Shin
,
Y. C.
,
2018
, “
Wideband Anti-Reflective Silicon Surface Structures Fabricated by Femtosecond Laser Texturing
,”
Appl. Surf. Sci.
,
459
, pp.
86
91
.10.1016/j.apsusc.2018.07.189
51.
Baldacchini
,
T.
,
Carey
,
J. E.
,
Zhou
,
M.
, and
Mazur
,
E.
,
2006
, “
Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser
,”
Langmuir
,
22
(
11
), pp.
4917
4919
.10.1021/la053374k
52.
Mazur
,
E.
, and
Shen
, M.
,
2019
,
Femtosecond Laser-Induced Formation of Submicrometer Spikes on a Semiconductor Substrate
,
Harvard Univ
,
Cambridge, MA
.
53.
Tahir
,
M. B.
,
Rafique
,
M.
,
Rafique
,
M. S.
,
Iqbal
,
T.
, and
Nabi
,
G.
,
2017
, “
Electron Emission Characterization of Laser-Induced Gaseous Plasma
,”
Indian J. Pure Appl. Phys.
, (
2
), pp.
145
154
.http://nopr.niscair.res.in/handle/123456789/40528
54.
Pagano
,
C.
,
Hafeez
,
S.
, and
Lunney
,
J. G.
,
2009
, “
Influence of Transverse Magnetic Field on Expansion and Spectral Emission of Laser Produced Plasma
,”
J. Phys. D
,
42
(
15
), p.
155205
.10.1088/0022-3727/42/15/155205
55.
Wang
,
X.
,
Zhang
,
S.
,
Cheng
,
X.
,
Zhu
,
E.
,
Hang
,
W.
, and
Huang
,
B.
,
2014
, “
Ion Kinetic Energy Distributions in Laser-Induced Plasma
,”
Spectrochim. Acta B
,
99
, pp.
101
114
.10.1016/j.sab.2014.06.018
56.
Baraldi
,
G.
,
Perea
,
A.
, and
Afonso
,
C. N.
,
2011
, “
Dynamics of Ions Produced by Laser Ablation of Ceramic Al2O3 and Al at 193 nm
,”
Appl. Phys. A
,
105
(
1
), pp.
75
79
.10.1007/s00339-011-6523-9
57.
Apiñaniz
,
J. I.
,
Gordillo-Vázquez
,
F. J.
, and
Martínez
,
R.
,
2012
, “
Ion Energy Distributions in Laser-Produced Plasmas With Two Collinear Pulses
,”
Plasma Sources Sci. Technol.
,
21
(
1
), p.
015016
.10.1088/0963-0252/21/1/015016
58.
Walters
,
C. T.
,
Barnes
,
R. H.
, and
Beverly
,
R. E.
, III
,
1978
, “
Initiation of Laser Supported Detonation (LSD) Waves
,”
J. Appl. Phys.
,
49
(
5
), pp.
2937
2949
.10.1063/1.325181
59.
Iftikhar
,
H.
,
Bashir
,
S.
,
Dawood
,
A.
,
Akram
,
M.
,
Hayat
,
A.
,
Mahmood
,
K.
,
Zaheer
,
A.
,
Amin
,
S.
, and
Murtaza
,
F.
,
2017
, “
Magnetic Field Effect on Laser-Induced Breakdown Spectroscopy and Surface Modifications of Germanium at Various Fluences
,”
Laser Part. Beams
,
35
(
1
), pp.
159
169
.10.1017/S0263034617000039
60.
Javed
,
M.
,
Bashir
,
S.
,
Akram
,
M.
,
Mahmood
,
K.
,
Ayub
,
R.
,
Hussain
,
F.
,
Fatma
,
N.
, and
Iqbal
,
M.
,
2021
, “
Evaluation and Measurement of Laser Induced Zr-Plasma Parameters Along With Self-Generated Electric and Magnetic Fields Under Various Pressures of Ar Environment
,”
Optik
,
246
, p.
167790
.10.1016/j.ijleo.2021.167790
61.
Bhatti
,
M. U. A.
,
Bashir
,
S.
,
Hayat
,
A.
,
Mahmood
,
K.
,
Ayub
,
R.
,
Javed
,
M.
, and
Khan
,
M. S.
,
2021
, “
Energy Ad Flux Measurements of Laserinduced Silver Plasma Ions by Using Faraday Cup
,”
Plasma Sci. Tech.
,
23
(
8
), p.
085510
.10.1088/2058-6272/ac0417
62.
Kabashin
,
A. V.
,
Nikitin
,
P. I.
,
Marine
,
W.
, and
Sentis
,
M.
,
1998
, “
Experimental Study of Spontaneous Electric Field Generated by a Laser Plasma
,”
Appl. Phys. Lett.
,
73
(
1
), pp.
25
27
.10.1063/1.121711
You do not currently have access to this content.