Abstract

This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.

References

1.
Willemet
,
M.
, and
Alastruey
,
J.
,
2015
, “
Arterial Pressure and Flow Wave Analysis Using Time-Domain 1-D Hemodynamics
,”
Ann. Biomed. Eng
,.
43
(
1
), pp.
190
206
.10.1007/s10439-014-1087-4
2.
Yli-Ollila
,
H.
,
Laitinen
,
T.
,
Weckström
,
M.
, and
Laitinen
,
T. M.
,
2016
, “
New Indices of Arterial Stiffness Measured From Longitudinal Motion of Common Carotid Artery in Relation to Reference Methods, a Pilot Study
,”
Clin. Physiol. Funct. Imag.
,
36
(
5
), pp.
376
388
.10.1111/cpf.12240
3.
Gepner
,
A. D.
,
McClelland
,
R. L.
,
Korcarz
,
C. E.
,
Young
,
R.
,
Kaufman
,
J. D.
,
Mitchell
,
C. C.
, and
Stein
,
J. H.
,
2019
, “
Carotid Artery Displacement and Cardiovascular Disease Risk in the Multi-Ethnic Study of Atherosclerosis
,”
Vasc. Med.
,
24
(
5
), pp.
405
413
.10.1177/1358863X19853362
4.
Au
,
J. S.
,
Ditor
,
D. S.
,
MacDonald
,
M. J.
, and
Stöhr
,
E. J.
,
2016
, “
Carotid Artery Longitudinal Wall Motion is Associated With Local Blood Velocity and Left Ventricular Rotational, but Not Longitudinal, Mechanics
,”
Physiol Rep.
,
4
(
14
), p.
e12872
.10.14814/phy2.12872
5.
Au
,
J. S.
,
Bochnak
,
P. A.
,
Valentino
,
S. E.
,
Cheng
,
J. L.
,
Stöhr
,
E. J.
, and
MacDonald
,
M. J.
,
2018
, “
Cardiac and Haemodynamic Influence on Carotid Artery Longitudinal Wall Motion
,”
Exp. Physiol.
,
103
(
1
), pp.
141
152
.10.1113/EP086621
6.
Taivainen
,
S. H.
,
Yli-Ollila
,
H.
,
Juonala
,
M.
,
Kähönen
,
M.
,
Raitakari
,
O. T.
,
Laitinen
,
T. M.
, and
Laitinen
,
T. P.
,
2018
, “
Influence of Cardiovascular Risk Factors on Longitudinal Motion of the Common Carotid Artery Wall
,”
Atherosclerosis
,
272
, pp.
54
59
.10.1016/j.atherosclerosis.2018.02.037
7.
Taivainen
,
S. H.
,
Yli-Ollila
,
H.
,
Juonala
,
M.
,
Kähönen
,
M.
,
Raitakari
,
O. T.
,
Laitinen
,
T. M.
, and
Laitinen
,
T. P.
,
2017
, “
Interrelationships Between Indices of Longitudinal Movement of the Common Carotid Artery Wall and the Conventional Measures of Subclinical Arteriosclerosis
,”
Clin. Physiol. Funct. Imag.
,
37
(
3
), pp.
305
313
.10.1111/cpf.12305
8.
Cardamone
,
L.
,
Valentín
,
A.
,
Eberth
,
J. F.
, and
Humphrey
,
J. D.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model Mechanobiol.
,
8
(
6
), pp.
431
446
.10.1007/s10237-008-0146-x
9.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.10.1016/j.jbiomech.2008.11.011
10.
Gao
,
M.
,
Cheng
,
H. M.
,
Sung
,
S. H.
,
Chen
,
C. H.
,
Olivier
,
N. B.
, and
Mukkamala
,
R.
,
2017
, “
Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model
,”
IEEE Trans. Biomed. Eng.
,
64
(
7
), pp.
1524
1534
.10.1109/TBME.2016.2612639
11.
Womersley
,
J. R.
,
1955
, “
XXIV. Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube—I: The Linear Approximation for Long Waves
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
46
(
373
), pp.
199
221
.10.1080/14786440208520564
12.
Atabek
,
H. B.
,
1968
, “
Wave Propagation Through a Viscous Fluid Contained in a Tethered, Initially Stresses, Orthotropic Elastic Tube
,”
Biophys J.
,
8
(
5
), pp.
626
649
.10.1016/S0006-3495(68)86512-9
13.
Mirsky
,
I.
,
1967
, “
Wave Propagation in a Viscous Fluid Contained in an Orthotropic Elastic Tube
,”
Biophys J.
,
7
(
2
), pp.
165
186
.10.1016/S0006-3495(67)86582-2
14.
Cox
,
R. H.
,
1969
, “
Comparison of Linearized Wave Propagation Models for Arterial Blood Flow Analysis
,”
J. Biomech.
,
2
(
3
), pp.
251
65
.10.1016/0021-9290(69)90082-7
15.
Klip
,
W.
,
Van Loon
,
P.
, and
Klip
,
D. A.
,
1967
, “
Formulas for Phase Velocity and Damping of Longitudinal Waves in Thick-Walled Viscoelastic Tubes
,”
J. Appl. Phys.
,
38
(
9
), pp.
3745
3755
.10.1063/1.1710205
16.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Constitutive Modelling of Arteries
,”
Proc. R. Soc. A.
,
466
(
2118
), pp.
1551
1597
.10.1098/rspa.2010.0058
17.
Humphrey
,
J. D.
,
2009
, “
Vascular Mechanics, Mechanobiology, and Remodeling
,”
J. Mech. Med. Biol.
,
09
(
02
), pp.
243
257
.10.1142/S021951940900295X
18.
Smith
,
S. M.
,
Marin
,
J.
,
Adams
,
A.
,
West
,
K.
, and
Hao
,
Z.
,
2022
, “
Radial and Axial Motion of the Initially Tensioned Orthotropic Arterial Wall in Arterial Pulse Wave Propagation
,”
ASME J. Med. Diag.
,
5
(
2
), p. 0
21004
.10.1115/1.4053863
19.
Bukač
,
M.
, and
Čanić
,
S.
,
2013
, “
Longitudinal Displacement in Viscoelastic Arteries: A Novel Fluid-Structure Interaction Computational Model, and Experimental Validation
,”
Math. Biosci. Eng.
,
10
(
2
), pp.
295
318
.10.3934/mbe.2013.10.295
20.
Wang
,
Z.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
,
2015
, “
A Viscoelastic Fluid-Structure Interaction Model for Carotid Arteries Under Pulsatile Flow
,”
Int. J. Numer. Method Biomed., Eng.
,
31
(
5
), p.
e02709
.10.1002/cnm.2709
21.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
(
1
), pp.
61
8
.10.1161/01.RES.23.1.61
22.
Anliker
,
M.
,
Moritz
,
W. E.
, and
Ogden
,
E.
,
1968
, “
Transmission Characteristics of Axial Waves in Blood Vessels
,”
J. Biomech.
,
1
(
4
), pp.
235
246
.10.1016/0021-9290(68)90019-5
23.
Lucas
,
C. L.
,
Wilcox
,
B. R.
,
Ha
,
B.
, and
Henry
,
G. W.
,
1988
, “
Comparison of Time Domain Algorithms for Estimating Aortic Characteristic Impedance in Humans
,”
IEEE Trans. Biomed. Eng.
,
35
(
1
), pp.
62
68
.10.1109/10.1337
24.
Jagielska
,
K.
,
Trzupek
,
D.
,
Lepers
,
M.
,
Pelc
,
A.
, and
Zieliński
,
P.
,
2007
, “
Effect of Surrounding Tissue on Propagation of Axisymmetric Waves in Arteries
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
,
76
(
6 Pt 2
), p.
066304
.10.1103/PhysRevE.76.066304
25.
Ahlgren
,
Å. R.
,
Steen
,
S.
,
Segstedt
,
S.
,
Erlöv
,
T.
,
Lindström
,
K.
,
Sjöberg
,
T.
,
Persson
,
H. W.
,
Ricci
,
S.
,
Tortoli
,
P.
, and
Cinthio
,
M.
,
2015
, “
Profound Increase in Longitudinal Displacements of the Porcine Carotid Artery Wall Can Take Place Independently of Wall Shear Stress: A Continuation Report
,”
Ultrasound Med. Biol.
,
41
(
5
), pp.
1342
1353
.10.1016/j.ultrasmedbio.2015.01.005
You do not currently have access to this content.