Abstract

Lattice structures offer great benefits when employed in medical implants for cell attachment and growth (osseointegration), minimization of stress shielding phenomena, and weight reduction. This study is focused on a proof of concept for developing a generic shoulder hemi-prosthesis, from a patient-specific case of a 46-years-old male with a tumor on the upper part of his humerus. A personalized biomodel was designed and a lattice structure was integrated in its middle portion, to lighten weight without affecting humerus' mechanical response. To select the most appropriate lattice structure, three different configurations were initially tested: tetrahedral vertex centroid (TVC), hexagonal prism vertex centroid (HPVC), and cubic diamond (CD). They were fabricated in resin by digital light processing and its mechanical behavior was studied via compression testing and finite element modeling (FEM). The selected structure according to the results was the HPVC, which was integrated in a digital twin of the biomodel to validate its mechanical performance through FEM but substituting the bone material model with a biocompatible titanium alloy (Ti6Al4V) suitable for prostheses fabrication. Results of the simulation showed acceptable levels of Von Mises stresses (325 MPa max.), below the elastic limit of the titanium alloys, and a better response (52 MPa max.) in a model with equivalent elastic properties, with stress performance in the same order of magnitude than the showed in bone's material model.

References

1.
Magnenat-Thalmann
,
N.
,
Ratib
,
O.
, and
Fai Choi
,
H.
,
2014
,
3D Multiscale Physiological Human
,
Springer
,
London, UK
.
2.
Taylor
,
T.
,
2019
, “
Shoulder Joint
,” Innerbody Research, Palo Alto, CA, accessed June 25, 2021, http://www.innerbody.com
3.
Tecante
,
K.
,
Seehaus
,
F.
,
Welke
,
B.
,
Olender
,
G.
,
Schwarze
,
M.
,
Lynch
,
S.
, and
Hurschler
,
C.
,
2014
, “
Clinical Gait Analysis and Musculoskeletal Modeling
,”
3D Multiscale Physiological Human
,
Springer
,
London
, UK, pp.
165
187
.
4.
Jones
,
O.
,
2018
, “
The Shoulder Joint
,” eHealthcare Solutions, Ewing, NJ, accessed June 25, 2021, https://teachmeanatomy.info
5.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Halder
,
A.
,
Beier
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living
,”
J. Biomech.
,
42
(
12
), pp.
1840
1849
.10.1016/j.jbiomech.2009.05.035
6.
Buechel
,
F. F.
, and
Pappas
,
M. J.
,
2015
,
Principals of Human Joint Replacement
,
Springer
,
Berlin
.
7.
Zheng
,
M.
,
Zou
,
Z.
,
Bartolo
,
P. J. D.
,
Silva
,
Peach
,
C.
, and
Ren
,
L.
,
2017
, “
Finite Element Models of the Human Shoulder Complex: A Review of Their Clinical Implications and Modelling Techniques
,”
Int. J. Numer. Method. Biomed. Eng.
,
33
(
2
), p.
e02777
.10.1002/cnm.2777
8.
Islán Marcos
,
M.
,
Lechosa Urquijo
,
E.
,
Blaya Haro
,
F.
,
D'Amato
,
R.
,
Soriano Heras
,
E.
, and
Juanes
,
J. A.
,
2019
, “
Behavior Under Load of a Human Shoulder: Finite Element Simulation and Analysis
,”
J. Med. Syst.
,
43
(
5
), p.
132
.10.1007/s10916-019-1248-y
9.
Wand
,
R. J.
,
Dear
,
K. E.
,
Bigsby
,
E.
, and
Wand
,
J. S.
,
2012
, “
A Review of Shoulder Replacement Surgery
,”
J. Perioper. Pract.
,
22
(
11
), pp.
354
359
.10.1177/175045891602201102
10.
Katti
,
K. S.
,
2004
, “
Biomaterials in Total Joint Replacement
,”
Colloids Surf. B Biointerfaces
,
39
(
3
), pp.
133
142
.10.1016/j.colsurfb.2003.12.002
11.
Ridzwan
,
M. I. Z.
,
Shuib
,
S.
,
Hassan
,
A. Y.
,
Shokri
,
A. A.
, and
Mohammad Ibrahim
,
M. N.
,
2007
, “
Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review
,”
J. Med. Sci.
,
7
(
3
), pp.
460
467
.10.3923/jms.2007.460.467
12.
Al-Tamimi
,
A. A.
,
Peach
,
C.
,
Fernandes
,
P. R.
,
Cseke
,
A.
, and
Bartolo
,
P. J. D. S.
,
2017
, “
Topology Optimization to Reduce the Stress Shielding Effect for Orthopedic Applications
,”
Procedia CIRP
,
65
, pp.
202
206
.10.1016/j.procir.2017.04.032
13.
Mavrogenis
,
A. F.
,
Dimitriou
,
R.
,
Parvizi
,
J.
, and
Babis
,
G. C.
,
2009
, “
Biology of Implant Osseointegration
,”
J. Musculoskelet. Neuronal Interact.
,
9
(
2
), pp.
61
71
.https://pubmed.ncbi.nlm.nih.gov/19516081/
14.
Jetté
,
B.
,
Brailovski
,
V.
,
Dumas
,
M.
,
Simoneau
,
C.
, and
Terriault
,
P.
,
2018
, “
Femoral Stem Incorporating a Diamond Cubic Lattice Structure: Design, Manufacture and Testing
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
58
72
.10.1016/j.jmbbm.2017.08.034
15.
Mahmoud
,
D.
, and
Elbestawi
,
M.
,
2017
, “
Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review
,”
J. Manuf. Mater. Process.
,
1
(
2
), p.
13
.10.3390/jmmp1020013
16.
Peto
,
M.
,
Ramirez-Cedillo
,
E.
,
Uddin
,
M. J.
,
Rodriguez
,
C. A.
, and
Siller
,
H. R.
,
2020
, “
Mechanical Behavior of Lattice Structures Fabricated by Direct Light Processing With Compression Testing and Size Optimization of Unit Cells
,”
ASME
Paper No. IMECE2019-12260.10.1115/IMECE2019-12260
17.
Krone
,
R.
, and
Schuster
,
P.
,
2006
, “
An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of the Human Femur
,”
SAE
Paper No. 2006-01-0064.10.4271/2006-01-0064
18.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
382
(
1782
), pp.
43
59
.10.1098/rspa.1982.0088
19.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
, p.
108137
.10.1016/j.matdes.2019.108137
20.
Syam
,
W. P.
,
Jianwei
,
W.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2018
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
,
52
, pp.
494
506
.10.1016/j.precisioneng.2017.09.010
21.
Guo
,
H.
,
Takezawa
,
A.
,
Honda
,
M.
,
Kawamura
,
C.
, and
Kitamura
,
M.
,
2020
, “
Finite Element Simulation of the Compressive Response of Additively Manufactured Lattice Structures With Large Diameters
,”
Comput. Mater. Sci.
,
175
, p.
109610
.10.1016/j.commatsci.2020.109610
22.
Li
,
C.
,
Lei
,
H.
,
Liu
,
Y.
,
Zhang
,
X.
,
Xiong
,
J.
,
Zhou
,
H.
, and
Fang
,
D.
,
2018
, “
Crushing Behavior of Multi-Layer Metal Lattice Panel Fabricated by Selective Laser Melting
,”
Int. J. Mech. Sci.
,
145
, pp.
389
399
.10.1016/j.ijmecsci.2018.07.029
23.
Ashby
,
M. F.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
364
(
1838
), pp.
15
30
.10.1098/rsta.2005.1678
You do not currently have access to this content.