Abstract

Flexible medical instruments undergo looping during insertion and navigation inside the human body. It makes the control of the distal end difficult and raises safety concerns. This paper proposes the minimum strain energy concept to get the deformed shape of a flexible instrument in three-dimensional space. A Bézier curve is used to define the trajectory of the deformed shape under different loading conditions and constraints. Looping behavior is studied for different end shortening conditions. The effect of end twist on looping behavior is studied. It is observed that end twist leads to early onset of out-of-plane deformation leading to looping. The strain energy plot gives an insight into the behavior of these instruments with respect to end shortening and twist. The strain energy plot shows the minimum value for 2π end twist. Therefore, the instrument tends to go for looping if the end twist is present. Force and torque characteristics are obtained which will lead to the design and control of these instruments. Force and torque plots show negative stiffness when the instrument is going for looping. The unlooping phenomenon is also discussed and a strategy is proposed to mitigate looping. The proposed modeling approach can be utilized to address the complex behavior of a flexible instrument in medical as well as in other industrial applications. The insight developed will help in designing and developing control for safe and reliable usage of flexible instruments in various domains.

References

1.
Shah
,
J.
,
2002
, “
Endoscopy Through the Ages
,”
BJU Int.
,
89
(
7
), pp.
645
652
.10.1046/j.1464-410X.2002.02726.x
2.
Yeung
,
B. P. M.
, and
Gourlay
,
T.
,
2012
, “
A Technical Review of Flexible Endoscopic Multitasking Platforms
,”
Int. J. Surg.
,
10
(
7
), pp.
345
354
.10.1016/j.ijsu.2012.05.009
3.
Shah
,
S. G.
,
Saunders
,
B. P.
,
Brooker
,
J. C.
, and
Williams
,
C. B.
,
2000
, “
Magnetic Imaging of Colonoscopy: An Audit of Looping, Accuracy and Ancillary Maneuvers
,”
Gastrointest. Endoscopy
,
52
(
1
), pp.
1
8
.10.1067/mge.2000.107296
4.
Raju
,
G. S.
,
Rex
,
D. K.
,
Kozarek
,
R. A.
,
Ahmed
,
I.
,
Brining
,
D.
, and
Pasricha
,
P. J.
,
2004
, “
A Novel Shape-Locking Guide for Prevention of Sigmoid Looping During Colonoscopy
,”
Gastrointest. Endoscopy
,
59
(
3
), pp.
416
419
.10.1016/S0016-5107(03)02709-3
5.
Khatait
,
J. P.
,
2013
, “
Motion and Force Transmission of a Flexible Instrument Inside a Curved Endoscope
,”
Ph.D. thesis
,
University of Twente
, The
Netherlands
.https://web.iitd.ac.in/~jpkhatait/docs/thesis_JPKhatait.pdf
6.
Hawari
,
R.
, and
Pasricha
,
P. J.
,
2007
, “
Going for the Loop: A Unique Overtube for the Difficult Colonoscopy
,”
J. Clin. Gastroenterol.
,
41
(
2
), pp.
138
140
.10.1097/01.mcg.0000225595.01201.d2
7.
Stump
,
D.
,
2000
, “
The Hockling of Cables: A Problem in Shearable and Extensible Rods
,”
Int. J. Solids Struct.
,
37
(
3
), pp.
515
533
.10.1016/S0020-7683(99)00019-0
8.
Southwell
,
R. V.
,
1936
, “
Castigliano's Principle of Minimum Strain-Energy
,”
Proc. R. Soc. London. Ser. A-Math. Phys. Sci.
,
154
(
881
), pp.
4
21
.10.1098/rspa.1936.0033
9.
Rajesh
,
G.
, and
Khatait
,
J. P.
,
2021
, “
Deformation Modeling of a Flexible Instrument Using a Bézier Curve
,”
ASME J. Med. Devices
,
15
(
1
), p.
011103
.10.1115/1.4049395
10.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Meijaard
,
J. P.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Flexible Multibody Modeling of a Surgical Instrument Inside an Endoscope
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011018
.10.1115/1.4026059
11.
Greco
,
L.
, and
Cuomo
,
M.
,
2013
, “
B-Spline Interpolation of Kirchhoff-Love Space Rods
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
251
269
.10.1016/j.cma.2012.11.017
12.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer-Verlag, Berlin.
13.
Bükcü
,
B.
, and
Karacan
,
M. K.
,
2016
, “
On the Modified Orthogonal Frame With Curvature and Torsion in 3-Space
,”
Math. Sci. Appl. E-Notes
,
4
(
1
), pp.
184
188
.10.36753/mathenot.421429
14.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer-Verlag, London, UK.
15.
Sokolnikoff
,
I. S.
,
1956
,
Mathematical Theory of Elasticity
, 2nd ed.,
McGraw-Hill Book Company
,
New York
.
16.
Dill
,
E. H.
,
1992
, “
Kirchhoff's Theory of Rods
,”
Archive History Exact Sci.
,
44
(
1
), pp.
1
23
.10.1007/BF00379680
17.
Wakamatsu
,
H.
, and
Hirai
,
S.
,
2004
, “
Static Modeling of Linear Object Deformation Based on Differential Geometry
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
293
311
.10.1177/0278364904041882
18.
Boresi
,
A. P.
,
Schmidt
,
R. J.
, and
Sidebottom
,
O. M.
,
1993
,
Advanced Mechanics of Materials
, 5th ed.,
Wiley
,
New York
.
19.
Goss
,
V.
,
Van der Heijden
,
G.
,
Thompson
,
J.
, and
Neukirch
,
S.
,
2005
, “
Experiments on Snap Buckling, Hysteresis and Loop Formation in Twisted Rods
,”
Exp. Mech.
,
45
(
2
), pp.
101
111
.10.1007/BF02428182
20.
MATLAB Optimization Toolbox
,
R2019b
, “
Matlab Optimization Toolbox
,”
The MathWorks
,
Natick, MA
.
You do not currently have access to this content.