Smart nitinol guidewires have been proposed to improve trackability, facilitating the advancement of catheters through complex vascular anatomies during neurovascular interventions. A smart 0.015 in. diameter nitinol guidewire was actualized through Joule heating of one-way and two-way shape memory alloys (SMA). The device functionalities in terms of bending performance were analyzed: (1) trackability of a 4 Fr catheter as determined in an anatomically correct in vitro environment; (2) time and spatial response of the smart guidewire as a function of material temperature and applied current; and (3) thrombogenic effects as a function of temperature and applied voltage. The results suggest that smart guidewires have substantially improved trackability (i.e., deflection of 15 deg) to overcome the “ledge effect” with the absence of thrombogenicity via a smart guidewire–catheter combined transcatheter based procedure which keeps the catheter surface temperature at 30–33 °C.

References

1.
Lloyd-Jones
,
D.
,
Adams
,
R. J.
,
Brown
,
T. M.
,
Carnethon
,
M.
,
Dai
,
S.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Ford
,
E.
,
Furie
,
K.
,
Gillespie
,
C.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
P. M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M. M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Mussolino
,
M.
,
Nichol
,
G.
,
Roger
,
V. L.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Roger
,
V. L.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N. D.
,
Wylie-Rosett
,
J.
, and the
American Heart Association Statistics Committee
and
Stroke Statistics Subcommittee
,
2010
, “
Heart Disease and Stroke Statistics—2010 Update
,”
Circulation
,
121
(
7
), pp.
e46
e215
10.1161/CIRCULATIONAHA.109.192667.
2.
Broderick
,
J. P.
,
2004
, “
William M. Feinberg Lecture: Stroke Therapy in the Year 2025: Burden, Breakthroughs, and Barriers to Progress
,”
Stroke
,
35
(
1
), pp.
205
211
10.1161/01.STR.0000106160.34316.19.
3.
Schievink
,
W. I.
,
1997
, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
,
336
(
1
), pp.
28
40
.10.1056/NEJM199701023360106
4.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
2006
, “
Cerebral Aneurysms
,”
N. Engl. J. Med.
,
355
(
9
), pp.
928
939
.10.1056/NEJMra052760
5.
Huang
,
J.
, and
van Gelder
,
J. M.
,
2002
, “
The Probability of Sudden Death From Rupture of Intracranial Aneurysms: A Meta-Analysis
,”
Neurosurgery
,
51
(
5
), pp.
1101
1107
.10.1097/00006123-200211000-00001
6.
Strong
,
K.
,
Mathers
,
C.
, and
Bonita
,
R.
,
2007
, “
Preventing Stroke: Saving Lives Around the World
,”
Lancet Neurol.
,
6
(
2
), pp.
182
187
.10.1016/S1474-4422(07)70031-5
7.
Johnston
,
S. C.
,
Mendis
,
S.
, and
Mathers
,
C. D.
,
2009
, “
Global Variation in Stroke Burden and Mortality: Estimates From Monitoring, Surveillance, and Modelling
,”
Lancet Neurol.
,
8
(
4
), pp.
345
354
.10.1016/S1474-4422(09)70023-7
8.
Smith
,
W.
,
2006
, “
Safety of Mechanical Thrombectomy and Intravenous Tissue Plasminogen Activator in Acute Ischemic Stroke. Results of the Multi Mechanical Embolus Removal in Cerebral Ischemia (MERCI) Trial, Part I
,”
Am. J. Neuroradiol.
,
27
(
6
), pp.
1177
1182
, available at: http://www.ajnr.org/content/27/6/1177.full.pdf+html
9.
Ciccone
,
A.
,
Valvassori
,
L.
,
Nichelatti
,
M.
,
Sgoifo
,
A.
,
Ponzio
,
M.
,
Sterzi
,
R.
, and
Boccardi
,
E.
,
2013
, “
Endovascular Treatment for Acute Ischemic Stroke
,”
N. Engl. J. Med.
,
368
(
10
), pp.
904
913
.10.1056/NEJMoa1213701
10.
Sharma
,
V. K.
,
Teoh
,
H. L.
,
Wong
,
L. Y.
,
Su
,
J.
,
Ong
,
B. K.
, and
Chan
,
B. P.
,
2009
, “
Recanalization Therapies in Acute Ischemic Stroke: Pharmacological Agents, Devices, and Combinations
,”
Stroke Res. Treat.
,
2010
, p.
672064
10.4061/2010/672064.
11.
Katzan
,
I. L.
,
Hammer
,
M. D.
,
Hixson
,
E. D.
,
Furlan
,
A. J.
,
Abou-Chebl
,
A.
, and
Nadzam
,
D. M.
,
2004
, “
Utilization of Intravenous Tissue Plasminogen Activator for Acute Ischemic Stroke
,”
Arch. Neurol.
,
61
(
3
), pp.
346
350
.10.1001/archneur.61.3.346
12.
Guglielmi
,
G.
,
Viñuela
,
F.
,
Dion
,
J.
, and
Duckwiler
,
G.
,
1991
, “
Electrothrombosis of Saccular Aneurysms Via Endovascular Approach: Part 2: Preliminary Clinical Experience
,”
J. Neurosurg.
,
75
(
1
), pp.
8
14
.10.3171/jns.1991.75.1.0008
13.
Guglielmi
,
G.
,
Viñuela
,
F.
,
Duckwiler
,
G.
,
Dion
,
J.
,
Lylyk
,
P.
,
Berenstein
,
A.
,
Strother
,
C.
,
Graves
,
V.
,
Halbach
,
V.
,
Nichols
,
D.
,
Hopkins
,
N.
,
Ferguson
,
R.
, and
Sepetka
,
I.
,
1992
, “
Endovascular Treatment of Posterior Circulation Aneurysms by Electrothrombosis Using Electrically Detachable Coils
,”
J. Neurosurg.
,
77
(
4
), pp.
515
524
.10.3171/jns.1992.77.4.0515
14.
Smith
,
W. S.
,
Sung
,
G.
,
Saver
,
J.
,
Budzik
,
R.
,
Duckwiler
,
G.
,
Liebeskind
,
D. S.
,
Lutsep
,
H. L.
,
Rymer
,
M. M.
,
Higashida
,
R. T.
,
Starkman
,
S.
,
Gobin
,
Y. P.
, for the Multi MERCI Investigators,
2008
, “
Mechanical Thrombectomy for Acute Ischemic Stroke: Final Results of the Multi MERCI Trial
,”
Stroke
,
39
(
4
), pp.
1205
1212
.10.1161/STROKEAHA.107.497115
15.
Khalessi
,
A. A.
,
Natarajan
,
S. K.
,
Orion
,
D.
,
Binning
,
M. J.
,
Siddiqui
,
A.
,
Levy
,
E. I.
, and
Hopkins
,
L. N.
,
2011
, “
Acute Stroke Intervention
,”
JACC Cardiovasc. Interventions
,
4
(
3
), pp.
261
269
.10.1016/j.jcin.2010.11.015
16.
Yoo
,
A. J.
,
Frei
,
D.
,
Tateshima
,
S.
,
Turk
,
A. S.
,
Hui
,
F. K.
,
Brook
,
A. L.
,
Heck
,
D. V.
, and
Hirsch
,
J. A.
,
2012
, “
The Penumbra Stroke System: A Technical Review
,”
J. Neurointerventional Surg.
,
4
(
3
), pp.
199
205
.10.1136/neurintsurg-2011-010080
17.
Buehler
,
W. J.
,
Gilfrich
,
J. V.
, and
Wiley
,
R. C.
,
1963
, “
Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys Near Composition NiTi
,”
J. Appl. Phys.
,
34
(
5
), pp.
1475
1477
.10.1063/1.1729603
18.
Szold
,
A.
,
2006
, “
Nitinol: Shape-Memory and Super-Elastic Materials in Surgery
,”
Surg. Endosc.
,
20
(
9
), pp.
1493
1496
.10.1007/s00464-005-0867-1
19.
Machado
,
L.
, and
Savi
,
M.
,
2003
, “
Medical Applications of Shape Memory Alloys
,”
Br. J. Med. Biol. Res.
,
36
(
6
), pp.
683
691
10.1590/S0100-879X2003000600001.
20.
Duerig
,
T.
,
Pelton
,
A.
, and
Stöckel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng. A
,
273–275
, pp.
149
160
10.1016/S0921-5093(99)00294-4.
21.
Stoeckel
,
D.
,
2000
, “
Nitinol Medical Devices and Implants
,”
Minimally Invasive Ther. Allied Technol.
,
9
(
2
), pp.
81
88
.10.3109/13645700009063054
22.
Pelton
,
A.
,
Stöckel
,
D.
, and
Duerig
,
T.
,
2000
, “
Medical Uses of Nitinol
,”
Materials Sci. Forum
,
327–328
, pp.
63
70
10.4028/www.scientific.net/MSF.327-328.63.
23.
Duerig
,
T.
,
Pelton
,
A.
, and
Stöckel
,
D.
,
1996
, “
The Utility of Superelasticity in Medicine
,”
Biomed. Mater. Eng.
,
6
(
4
), pp.
255
266
10.3233/BME-1996-6404.
24.
Stepan
,
L. L.
,
Levi
,
D. S.
, and
Carman
,
G. P.
,
2005
, “
A Thin Film Nitinol Heart Valve
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
915
918
.10.1115/1.2049311
25.
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K.
,
Viñuela
,
F.
, and
Carman
,
G. P.
,
2009
, “
Thin Film Nitinol Microstent for Aneurysm Occlusion
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051014
.10.1115/1.3118769
26.
Rigberg
,
D.
,
Tulloch
,
A.
,
Chun
,
Y.
,
Mohanchandra
,
K. P.
,
Carman
,
G.
, and
Lawrence
,
P.
,
2009
, “
Thin-Film Nitinol (NiTi): A Feasibility Study for a Novel Aortic Stent Graft Material
,”
J. Vasc. Surg.
,
50
(
2
), pp.
375
380
.10.1016/j.jvs.2009.03.028
27.
Kealey
,
C.
,
Chun
,
Y.
,
Viñuela
,
F.
,
Mohanchandra
,
K.
,
Carman
,
G.
,
Viñuela
,
F.
, and
Levi
,
D. S.
,
2012
, “
In Vitro and In Vivo Testing of a Novel, Hyperelastic Thin Film Nitinol Flow Diversion Stent
,”
J. Biomed. Mater. Res. Part B
,
100B
(
3
), pp.
718
725
10.1002/jbm.b.32504.
28.
Tobushi
,
H.
,
Hachisuka
,
T.
,
Yamada
,
S.
, and
Lin
,
P.-H.
,
1997
, “
Rotating–Bending Fatigue of a TiNi Shape-Memory Alloy Wire
,”
Mech. Mater.
,
26
(
1
), pp.
35
42
.10.1016/S0167-6636(97)00019-7
29.
Pelton
,
A. R.
,
2011
, “
Nitinol Fatigue: A Review of Microstructures and Mechanisms
,”
J. Mater. Eng. Perform.
,
20
(
4–5
), pp.
613
617
.10.1007/s11665-011-9864-9
30.
Pelton
,
A. R.
,
Schroeder
,
V.
,
Mitchell
,
M. R.
,
Gong
,
X. Y.
,
Barney
,
M.
, and
Robertson
,
S. W.
,
2008
, “
Fatigue and Durability on Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.10.1016/j.jmbbm.2007.08.001
31.
Shabalovskaya
,
S. A.
,
2002
, “
Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material
,”
Biomed. Mater. Eng.
,
12
(
1
), pp.
69
109
.
32.
Ryhänen
,
J.
,
Niemi
,
E.
,
Serlo
,
W.
,
Niemelä
,
E.
,
Sandvik
,
P.
,
Pernu
,
H.
, and
Salo
,
T.
,
1997
, “
Biocompatibility of Nickel-Titanium Shape Memory Metal and Its Corrosion Behavior in Human Cell Cultures
,”
J. Biomed. Mater. Res.
,
35
(
4
), pp.
451
457
10.1002/(SICI)1097-4636(19970615)35:4%3C451::AID-JBM5%3E3.0.CO;2-G.
33.
Castleman
,
L.
,
Motzkin
,
S.
,
Alicandri
,
F.
,
Bonawit
,
V.
, and
Johnson
,
A.
,
1976
, “
Biocompatibility of Nitinol Alloy as an Implant Material
,”
J. Biomed. Mater. Res.
,
10
(
5
), pp.
695
731
.10.1002/jbm.820100505
34.
Shabalovskaya
,
S.
,
Anderegg
,
J.
, and
Van Humbeeck
,
J.
,
2008
, “
Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications
,”
Acta Biomater.
,
4
(
3
), pp.
447
467
.10.1016/j.actbio.2008.01.013
35.
Armitage
,
D. A.
,
Parker
,
T. L.
, and
Grant
,
D. M.
,
2003
, “
Biocompatibility and Hemocompatibility of Surface-Modified NiTi Alloys
,”
J. Biomed. Mater. Res. Part A
,
66
(
1
), pp.
129
137
10.1002/jbm.a.10549.
36.
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K.
, and
Carman
,
G. P.
,
2009
, “
Superhydrophilic Surface Treatment for Thin Film NiTi Vascular Applications
,”
Mater. Sci. Eng. C
,
29
(
8
), pp.
2436
2441
.10.1016/j.msec.2009.07.004
37.
Kealey
,
C. P.
,
Whelan
,
S. A.
,
Chun
,
Y. J.
,
Soojung
,
C. H.
,
Tulloch
,
A. W.
,
Mohanchandra
,
K. P.
,
Di Carlo
,
D.
,
Levi
,
D. S.
,
Carman
,
G. P.
, and
Rigberg
,
D. A.
,
2010
, “
In Vitro Hemocompatibility of Thin Film Nitinol in Stenotic Flow Conditions
,”
Biomaterials
,
31
(
34
), pp.
8864
8871
.10.1016/j.biomaterials.2010.08.014
38.
Mohanchandra
,
K. P.
,
Chun
,
Y.
,
Prikhodko
,
S. V.
, and
Carman
,
G. P.
,
2011
, “
TEM Characterization of Super-Hydrophilic Ni–Ti Thin Film
,”
Mater. Lett.
,
65
(
8
), pp.
1184
1187
.10.1016/j.matlet.2011.01.037
39.
Tulloch
,
A. W.
,
Chun
,
Y.
,
Levi
,
D. S.
,
Mohanchandra
,
K. P.
,
Carman
,
G. P.
,
Lawrence
,
P. F.
,
Lawrence
,
P. F.
, and
Rigberg
,
D. A.
,
2011
, “
Super Hydrophilic Thin Film Nitinol Demonstrates Reduced Platelet Adhesion Compared With Commercially Available Endograft Materials
,”
J. Surg. Res.
,
171
(
1
), pp.
317
322
.10.1016/j.jss.2010.01.014
You do not currently have access to this content.