Abstract

Cardiac time intervals (CTIs) are vital indicators of cardiac health and can be noninvasively assessed using a combination of electrocardiography (ECG) and seismocardiography (SCG), a method of capturing cardiac-induced chest vibrations via accelerometers. SCG signals can be measured from different chest locations. However, more investigations are needed to evaluate the impact of sensor placement on SCG-derived cardiac parameters. This study investigates the effect of accelerometer placement along the sternum on SCG-derived CTI estimations and heart rate variability (HRV) parameters. A semi-automated algorithm was developed to detect SCG fiducial points and seven CTIs from thirteen healthy individuals. Comparative analysis with manually selected peaks and gold-standard ECG was conducted to assess fiducial point detection accuracy. Results indicate the highest recall and precision in aortic valve opening (0.84–1.00 and 0.96–1.00, respectively) and mitral valve closure (0.77–1.00 and 0.93–1.00, respectively) detection. Aortic valve closure (0.43–1.00 and 0.61–1.00, respectively) and mitral valve opening (0.64–1.00 and 0.91–1.00, respectively) detection, although slightly less accurate due to signal intensity variations, demonstrated overall effectiveness compared to manually selected peaks. Furthermore, SCG-derived heart rates showed a high correlation coefficient (r > 0.9) with the gold-standard ECG heart rates. Single-factor ANOVA revealed significant differences (p < 0.05) in SCG-derived CTI estimations based on sensor locations on the sternum, highlighting the importance of sensor placement for accurate assessments.

References

1.
Cook
,
J.
,
Umar
,
M.
,
Khalili
,
F.
, and
Taebi
,
A.
,
2022
, “
Body Acoustics for the Non-Invasive Diagnosis of Medical Conditions
,”
Bioengineering
,
9
(
4
), p.
149
.10.3390/bioengineering9040149
2.
Okwuosa
,
I. S.
,
Lewsey
,
S. C.
,
Adesiyun
,
T.
,
Blumenthal
,
R. S.
, and
Yancy
,
C. W.
,
2016
, “
Worldwide Disparities in Cardiovascular Disease: Challenges and Solutions
,”
Int. J. Cardiol.
,
202
, pp.
433
440
.10.1016/j.ijcard.2015.08.172
3.
Stewart
,
J.
,
Manmathan
,
G.
, and
Wilkinson
,
P.
,
2017
, “
Primary Prevention of Cardiovascular Disease: A Review of Contemporary Guidance and Literature
,”
JRSM Cardiovasc. Dis.
,
6
, p.
204800401668721
.10.1177/2048004016687211
4.
Zakeri
,
V.
,
Tavakolian
,
K.
,
Blaber
,
A. P.
,
Bauer
,
E. P.
,
Dehkordi
,
P.
, and
Khosrow-Khavar
,
F.
,
2020
, “
The Repeatability of Estimated Systolic Time Intervals in Healthy Subjects Using Seismocardiogram and Electrocardiogram
,”
Physiol. Meas.
,
41
(
2
), p.
02NT01
.10.1088/1361-6579/ab6f53
5.
Sahoo
,
P.
,
Thakkar
,
H.
,
Lin
,
W.-Y.
,
Chang
,
P.-C.
, and
Lee
,
M.-Y.
,
2018
, “
On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals
,”
Sensors
,
18
(
2
), p.
379
.10.3390/s18020379
6.
Dehkordi
,
P.
,
Khosrow-Khavar
,
F.
,
Di Rienzo
,
M.
,
Inan
,
O. T.
,
Schmidt
,
S. E.
,
Blaber
,
A. P.
,
Sørensen
,
K.
, et al.,
2019
, “
Comparison of Different Methods for Estimating Cardiac Timings: A Comprehensive Multimodal Echocardiography Investigation
,”
Front. Physiol.
,
10
, p.
1057
.10.3389/fphys.2019.01057
7.
Choudhary
,
T.
,
Sharma
,
L. N.
, and
Bhuyan
,
M. K.
,
2019
, “
Automatic Detection of Aortic Valve Opening Using Seismocardiography in Healthy Individuals
,”
IEEE J. Biomed. Health Inf.
,
23
(
3
), pp.
1032
1040
.10.1109/JBHI.2018.2829608
8.
Shafiq
,
G.
,
Tatinati
,
S.
,
Ang
,
W. T.
, and
Veluvolu
,
K. C.
,
2016
, “
Automatic Identification of Systolic Time Intervals in Seismocardiogram
,”
Sci. Rep.
,
6
(
1
), p.
37524
.10.1038/srep37524
9.
Tavakolian
,
K.
,
2016
, “
Systolic Time Intervals and New Measurement Methods
,”
Cardiovasc. Eng. Technol.
,
7
(
2
), pp.
118
125
.10.1007/s13239-016-0262-1
10.
Kaplan Berkaya
,
S.
,
Uysal
,
A. K.
,
Sora Gunal
,
E.
,
Ergin
,
S.
,
Gunal
,
S.
, and
Gulmezoglu
,
M. B.
,
2018
, “
A Survey on ECG Analysis
,”
Biomed. Signal Process. Control
,
43
, pp.
216
235
.10.1016/j.bspc.2018.03.003
11.
Di Rienzo
,
M.
,
Vaini
,
E.
,
Castiglioni
,
P.
,
Merati
,
G.
,
Meriggi
,
P.
,
Parati
,
G.
,
Faini
,
A.
, and
Rizzo
,
F.
,
2013
, “
Wearable Seismocardiography: Towards a Beat-by-Beat Assessment of Cardiac Mechanics in Ambulant Subjects
,”
Auton. Neurosci.
,
178
(
1–2
), pp.
50
59
.10.1016/j.autneu.2013.04.005
12.
Taebi
,
A.
, and
Mansy
,
H.
,
2017
, “
Time-Frequency Distribution of Seismocardiographic Signals: A Comparative Study
,”
Bioengineering
,
4
(
2
), p.
32
.10.3390/bioengineering4020032
13.
Rahman
,
M. M.
,
Cook
,
J.
, and
Taebi
,
A.
,
2023
, “
Non-Contact Heart Vibration Measurement Using Computer Vision-Based Seismocardiography
,”
Sci. Rep.
,
13
(
1
), p.
11787
.10.1038/s41598-023-38607-7
14.
Taebi
,
A.
,
Solar
,
B.
,
Bomar
,
A.
,
Sandler
,
R.
, and
Mansy
,
H.
,
2019
, “
Recent Advances in Seismocardiography
,”
Vibration
,
2
(
1
), pp.
64
86
.10.3390/vibration2010005
15.
Centracchio
,
J.
,
Andreozzi
,
E.
,
Esposito
,
D.
,
Gargiulo
,
G. D.
, and
Bifulco
,
P.
,
2022
, “
Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Force cardiography Recordings
,”
Bioengineering
,
9
(
3
), p.
89
.10.3390/bioengineering9030089
16.
Mann
,
A. J.
,
Gamage
,
P. T.
,
Kakavand
,
B.
, and
Taebi
,
A.
,
2024
, “
Exploring the Impact of Sensor Location on Seismocardiography-Derived Cardiac Time Intervals
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
7
(
1
), p.
011007
.10.1115/1.4063203
17.
Sørensen
,
K.
,
Schmidt
,
S. E.
,
Jensen
,
A. S.
,
Søgaard
,
P.
, and
Struijk
,
J. J.
,
2018
, “
Definition of Fiducial Points in the Normal Seismocardiogram
,”
Sci. Rep.
,
8
(
1
), p.
15455
.10.1038/s41598-018-33675-6
18.
Tokmak
,
F.
,
Koivisto
,
T.
,
Lahdenoja
,
O.
,
Vasankari
,
T.
,
Jaakkola
,
S.
, and
Airaksinen
,
K. J.
,
2023
, “
Mechanocardiography Detects Improvement of Systolic Function Caused by Resynchronization Pacing
,”
Physiol. Meas.
,
44
(
12
), p.
125009
.10.1088/1361-6579/ad1197
19.
Di Rienzo
,
M.
,
Vaini
,
E.
,
Castiglioni
,
P.
,
Meriggi
,
P.
, and
Rizzo
,
F.
,
2013
, “
Beat-to-Beat Estimation of LVET and QS2 Indices of Cardiac Mechanics From Wearable Seismocardiography in Ambulant Subjects
,” 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC),
Osaka, Japan, July 3–7, pp.
7017
7020
.10.1109/EMBC.2013.6611173
20.
Rienzo
,
M.
,
Di Vaini
,
E.
, and
Lombardi
,
P.
,
2017
, “
An Algorithm for the Beat-to-Beat Assessment of Cardiac Mechanics During Sleep on Earth and in Microgravity From the Seismocardiogram
,”
Sci. Rep.
,
7
, p.
15634
.10.1038/s41598-017-15829-0
21.
Rachim
,
V. P.
,
Lee
,
J.
,
Kim
,
Y.
,
Oh
,
J.
,
Jeong
,
U.
, and
Park
,
S.
,
2022
, “
A Scalable Laser‐Centric Fabrication of an Epidermal Cardiopulmonary Patch
,”
Adv. Mater. Technol.
,
7
(
11
), p.
2200242
.10.1002/admt.202200242
22.
Mann
,
A. J.
,
Kakavand
,
B.
,
Thibbotuwawa Gamage
,
P.
, and
Taebi
,
A.
,
2023
, “
Effect of Measurement Location on Cardiac Time Intervals Estimated by Seismocardiography
,”
ASME
Paper No. IMECE2023-112702.10.1115/IMECE2023-112702
23.
Chakrabarti
,
T.
,
Saha
,
S.
,
Roy
,
S.
, and
Chel
,
I.
,
2015
, “
Phonocardiogram Signal Analysis - Practices, Trends and Challenges: A Critical Review
,” 2015 International Conference and Workshop on Computing and Communication (
IEMCON
), Vancouver, BC, Canada, Oct. 15–17, pp.
1
4
.10.1109/IEMCON.2015.7344426
24.
Sedghamiz
,
H.
,
2014
, “
Matlab Implementation of Pan Tompkins ECG QRS Detector
”.10.13140/RG.2.2.14202.59841
25.
Sieciński
,
S.
,
Kostka
,
P. S.
, and
Tkacz
,
E. J.
,
2020
, “
Gyrocardiography: A Review of the Definition, History, Waveform Description, and Applications
,”
Sensors
,
20
(
22
), p.
6675
.10.3390/s20226675
26.
Tavakolian
,
K.
,
Dumont
,
G. A.
,
Houlton
,
G.
, and
Blaber
,
A. P.
,
2014
, “
Precordial Vibrations Provide Noninvasive Detection of Early-Stage Hemorrhage
,”
Shock
,
41
(
2
), pp.
91
96
.10.1097/SHK.0000000000000077
27.
Rai
,
D.
,
Thakkar
,
H. K.
,
Singh
,
D.
, and
Bathala
,
H. V.
,
2020
, “
Machine Learning Assisted Automatic Annotation of Isovolumic Movement and Aortic Valve Closure Using Seismocardiogram Signals
,”
2020 IEEE 17th India Council International Conference (Indicon)
, New Delhi, India, Dec. 10–13, pp.
1
6
.10.1109/Indicon49873.2020.9342412
28.
Inan
,
O. T.
,
Migeotte
,
P.-F.
,
Park
,
K.-S.
,
Etemadi
,
M.
,
Tavakolian
,
K.
,
Casanella
,
R.
,
Zanetti
,
J.
, et al.,
2015
, “
Ballistocardiography and Seismocardiography: A Review of Recent Advances
,”
IEEE J. Biomed. Health Inf.
,
19
(
4
), pp.
1414
1427
.10.1109/JBHI.2014.2361732
29.
Romano
,
C.
,
Formica
,
D.
,
Schena
,
E.
, and
Massaroni
,
C.
,
2023
, “
Investigation of Body Locations for Cardiac and Respiratory Monitoring With Skin-Interfaced Inertial Measurement Unit Sensors
,”
IEEE Sens. J.
,
23
(
7
), pp.
7806
7815
.10.1109/JSEN.2023.3245415
30.
Ha
,
T.
,
Tran
,
J.
,
Liu
,
S.
,
Jang
,
H.
,
Jeong
,
H.
,
Mitbander
,
R.
,
Huh
,
H.
, et al.,
2019
, “
A Chest‐Laminated Ultrathin and Stretchable E‐Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals
,”
Adv. Sci.
,
6
(
14
), p.
1900290
.10.1002/advs.201900290
31.
Parlato
,
S.
,
Centracchio
,
J.
,
Esposito
,
D.
,
Bifulco
,
P.
, and
Andreozzi
,
E.
,
2023
, “
ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects
,”
Sensors
,
23
(
19
), p.
8114
.10.3390/s23198114
32.
Sieciński
,
S.
,
Kostka
,
P. S.
, and
Tkacz
,
E. J.
,
2020
, “
Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers
,”
Sensors
,
20
(
16
), p.
4522
.10.3390/s20164522
33.
Crow
,
R. S.
,
Hannan
,
P.
,
Jacobs
,
D.
,
Hedquist
,
L.
, and
Salerno
,
D. M.
,
1994
, “
Relationship Between Seismocardiogram and Echocardiogram for Events in the Cardiac Cycle
,”
Am. J. Noninvasive Cardiol.
,
8
(
1
), pp.
39
46
.10.1159/000470156
34.
Işilay Zeybek
,
Z. M.
,
Racca
,
V.
,
Pezzano
,
A.
,
Tavanelli
,
M.
, and
Di Rienzo
,
M.
,
2022
, “
Can Seismocardiogram Fiducial Points Be Used for the Routine Estimation of Cardiac Time Intervals in Cardiac Patients?
,”
Front. Physiol.
,
13
, p.
825918
.10.3389/fphys.2022.825918
35.
Centracchio
,
J.
,
Parlato
,
S.
,
Esposito
,
D.
,
Bifulco
,
P.
, and
Andreozzi
,
E.
,
2023
, “
ECG-Free Heartbeat Detection in Seismocardiography Signals Via Template Matching
,”
Sens.
,
23
(
10
), p.
4684
.10.3390/s23104684
36.
Mora
,
N.
,
Cocconcelli
,
F.
,
Matrella
,
G.
, and
Ciampolini
,
P.
,
2020
, “
Fully Automated Annotation of Seismocardiogram for Noninvasive Vital Sign Measurements
,”
IEEE Trans. Instrumentation Meas.
,
69
(
4
), pp.
1241
1250
.10.1109/TIM.2019.2908511
37.
Hossein
,
A.
,
Abdessater
,
E.
,
Balali
,
P.
,
Cosneau
,
E.
,
Gorlier
,
D.
,
Rabineau
,
J.
,
Almorad
,
A.
,
Faoro
,
V.
, and
Van De Borne
,
P.
,
2024
, “
Smartphone-Derived Seismocardiography: Robust Approach for Accurate Cardiac Energy Assessment in Patients With Various Cardiovascular Conditions
,”
Sensors
,
24
(
7
), p.
2139
.10.3390/s24072139
38.
Landreani
,
F.
,
Caiani
,
E.
,
Golier
,
D.
,
Hossein
,
A.
,
Rabineau
,
J.
,
Migeotte
,
P. F.
, and
Van De Borne
,
P.
,
2018
, “
Heartbeat Detection Using Three-Axial Seismocardiogram Acquired by Mobile Phone
,”
2018 Computing in Cardiology Conference (CinC)
, Maastricht, The Netherlands, Sept. 23–26, Vol.
45
, pp.
1
4
.10.22489/CinC.2018.215
39.
Zheng
,
C.
,
Peng
,
W.
,
Huang
,
T.
,
Eldar
,
Y. C.
, and
Yu
,
M.
,
2024
, “
High Accurate Detection Method for Aortic Valve Opening of Seismocardiography Signals
,”
Biomed. Signal Process. Control
,
87
, p.
105484
.10.1016/j.bspc.2023.105484
40.
Rahman
,
M. M.
,
Mann
,
A.
, and
Taebi
,
A.
,
2024
, “
ECG-Free Assessment of Cardiac Valve Events Using Seismocardiography
,”
arXiv:2408.09513
.10.48550/arXiv.2408.09513
You do not currently have access to this content.