Abstract

Magnetic Resonance Elastography (MRE) is an imaging technique capable of quantifying the stiffness of in vivo tissue by applying and imaging shear waves produced by an MRE actuator. Poor image acquisition may result from the MRE procedure if there is insufficient contact between the MRE actuator and the patient. An experimental test setup outside of the clinic will aid in reducing the number of failed acquisitions by enabling the development of advanced actuators and actuator systems. This work presents the development and testing of a sensor-embedded tissue phantom setup paired with a support vector machine (SVM) classifier to automate the MRE actuator testing process. MRE actuation of soft tissue is simulated by utilizing a voice coil positioning stage that interfaces with a phantom. To capture the resulting vibrations, accelerometers are embedded inside the phantom. Subsequent characterization experiments verify the functionality of the developed phantoms to capture wave propagation. A secondary investigation was performed by utilizing the developed setup to collect acceleration measurements at varying contact distances. We provide an overview of feature analysis and selection to develop SVM models for contact detection. Multiple SVM models are reported, and the best-performing model displayed almost perfect validation (94.53%) and test (90.91%) accuracy. The pairing of sensor-embedded phantom with an SVM for detection demonstrates potential improvements to the MRE actuator developmental process by automatically assessing contact-related issues prior to clinical testing.

References

1.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
, and
Ehman
,
R. L.
,
2010
, “
Magnetic Resonance Elastography: A Review
,”
Clin. Anat.
,
23
(
5
), pp.
497
511
.10.1002/ca.21006
2.
Litwiller
,
D. V.
,
Mariappan
,
Y. K.
, and
Ehman
,
R. L.
,
2012
, “
Magnetic Resonance Elastography
,”
Curr. Med. Imaging Rev.
,
8
(
1
), pp.
46
55
.10.2174/157340512799220562
3.
Pagé
,
G.
,
Garteiser
,
P.
, and
Van Beers
,
B. E.
,
2022
, “
Magnetic Resonance Elastography of Malignant Tumors
,”
Front. Phys.
,
10
, p.
910036
.10.3389/fphy.2022.910036
4.
Low
,
G.
,
Kruse
,
S. A.
, and
Lomas
,
D. J.
,
2016
, “
General Review of Magnetic Resonance Elastography
,”
World J. Radiol.
,
8
(
1
), pp.
59
72
.10.4329/wjr.v8.i1.59
5.
Hiscox
,
L. V.
,
Johnson
,
C. L.
,
Barnhill
,
E.
,
McGarry
,
M. D.
,
Huston
,
J.
,
van Beek
,
E. J.
,
Starr
,
J. M.
, and
Roberts
,
N.
,
2016
, “
Magnetic Resonance Elastography (MRE) of the Human Brain: Technique, Findings and Clinical Applications
,”
Phys. Med. Biol.
,
61
(
24
), pp.
R401
R437
.10.1088/0031-9155/61/24/R401
6.
Venkatesh
,
S. K.
,
Yin
,
M.
, and
Ehman
,
R. L.
,
2013
, “
Magnetic Resonance Elastography of Liver: Technique, Analysis, and Clinical Applications
,”
J. Magn. Reson. Imaging
,
37
(
3
), pp.
544
555
.10.1002/jmri.23731
7.
Meinhold
,
W.
,
Ozkaya
,
E.
,
Ueda
,
J.
, and
Kurt
,
M.
,
2019
, “
Tuneable Resonance Actuators for Magnetic Resonance Elastography
,”
ASME
Paper No. DMD2019-3313.10.1115/DMD2019-3313
8.
Morillo-Hernandez
,
C.
,
Catania
,
R.
,
Grosse
,
P. J.
,
Bollino
,
G.
,
Borhani
,
A. A.
, and
Furlan
,
A.
,
2022
, “
Magnetic Resonance Elastography of the Liver: A Single-Institution Review of Cases Performed in a 5-Year Interval
,”
J. Comput. Assist. Tomogr.
,
46
(
1
), pp.
1
5
.10.1097/RCT.0000000000001228
9.
Nieves-Vazquez
,
H. A.
,
Ozkaya
,
E.
,
Meinhold
,
W.
,
Geahchan
,
A.
,
Bane
,
O.
,
Ueda
,
J.
, and
Taouli
,
B.
,
2024
, “
Deep Learning-Enabled Automated Quality Control for Liver MR Elastography: Initial Results
,”
J. Magn. Reson. Imaging.
, epub.10.1002/jmri.29490
10.
Anders
,
M.
,
Meyer
,
T.
,
Warmuth
,
C.
,
Pfeuffer
,
J.
,
Tzschaetzsch
,
H.
,
Herthum
,
H.
,
Shahryari
,
M.
,
Degenhardt
,
K.
,
Wieben
,
O.
,
Schmitter
,
S.
, et al.,
2024
, “
Rapid MR Elastography of the Liver for Subsecond Stiffness Sampling
,”
Magn. Reson. Med.
,
91
(
1
), pp.
312
324
.10.1002/mrm.29859
11.
Kemper
,
J.
,
Sinkus
,
R.
,
Lorenzen
,
J.
,
Nolte-Ernsting
,
C.
,
Stork
,
A.
, and
Adam
,
G.
,
2004
, “
MR Elastography of the Prostate: Initial In-Vivo Application
,”
RöFo
,
176
(
8
), pp.
1094
1099
.10.1055/s-2004-813279
12.
Hoodeshenas
,
S.
,
Yin
,
M.
, and
Venkatesh
,
S. K.
,
2018
, “
Magnetic Resonance Elastography of Liver: Current Update
,”
Top. Magn. Reson. Imaging
,
27
(
5
), pp.
319
333
.10.1097/RMR.0000000000000177
13.
QIBA MR Biomarker Committee
,
2023
, “MR Elastography of the Liver, Clinically Feasible Profile,” Quantitative Imaging Biomarkers Alliance, Profile Stage: Clinically Feasible, accessed Nov. 7, 2023, http://qibawiki.rsna.org/index.php/Profiles
14.
Navin
,
P. J.
,
Venkatesh
,
S. K.
, and
Ehman
,
R. L.
,
2021
, “Chapter 90 - MR Elastography,” B. D. Ross and S. S. Gambhir, eds., Molecular Imaging, Second Edition, Academic Press, Cambridge, MA, pp.
1759
1774
.
15.
Zerunian
,
M.
,
Masci
,
B.
,
Caruso
,
D.
,
Pucciarelli
,
F.
,
Polici
,
M.
,
Nardacci
,
S.
,
De Santis
,
D.
,
Iannicelli
,
E.
, and
Laghi
,
A.
,
2024
, “
Liver Magnetic Resonance Elastography: Focus on Methodology, Technique, and Feasibility
,”
Diagnostics
,
14
(
4
), p.
379
.10.3390/diagnostics14040379
16.
Guglielmo
,
F. F.
,
Venkatesh
,
S. K.
, and
Mitchell
,
D. G.
,
2019
, “
Liver MR Elastography Technique and Image Interpretation: Pearls and Pitfalls
,”
RadioGraphics
,
39
(
7
), pp.
1983
2002
.10.1148/rg.2019190034
17.
Steinkohl
,
E.
,
Bertoli
,
D.
,
Hansen
,
T. M.
,
Olesen
,
S. S.
,
Drewes
,
A. M.
, and
Frøkjær
,
J. B.
,
2021
, “
Practical and Clinical Applications of Pancreatic Magnetic Resonance Elastography: A Systematic Review
,”
Abdom. Radiol.
,
46
(
10
), pp.
4744
4764
.10.1007/s00261-021-03143-3
18.
Idilman
,
I. S.
,
Li
,
J.
,
Yin
,
M.
, and
Venkatesh
,
S. K.
,
2020
, “
MR Elastography of Liver: Current Status and Future Perspectives
,”
Abdom. Radiol.
,
45
(
11
), pp.
3444
3462
.10.1007/s00261-020-02656-7
19.
Triolo
,
E. R.
,
Khegai
,
O.
,
Ozkaya
,
E.
,
Rossi
,
N.
,
Alipour
,
A.
,
Fleysher
,
L.
,
Balchandani
,
P.
, and
Kurt
,
M.
,
2022
, “
Design, Construction, and Implementation of a Magnetic Resonance Elastography Actuator for Research Purposes
,”
Curr. Protoc.
,
2
(
3
), p.
e379
.10.1002/cpz1.379
20.
Chakouch
,
M. K.
,
Charleux
,
F.
, and
Bensamoun
,
S. F.
,
2015
, “Development of a Phantom Mimicking the Functional and Structural Behaviors of the Thighmuscles Characterized With Magnetic Resonance Elastography Technique,” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Milan, Italy, Aug. 25–29, pp.
6736
6739
.10.1109/EMBC.2015.7319939
21.
Ozkaya
,
E.
,
Triolo
,
E.
,
Rezayaraghi
,
F.
,
Abderezaei
,
J.
,
Meinhold
,
W.
,
Hong
,
K.
,
Alipour
,
A.
,
Kennedy
,
P.
,
Fleysher
,
L.
,
Ueda
,
J.
,
Balchandani
,
P.
,
Eriten
,
M.
,
Johnson
,
C.
,
Yang
,
Y.
, and
Kurt
,
M.
,
2021
, “
Brain-Mimicking Phantom for Biomechanical Validation of Motion Sensitive MR Imaging Techniques
,”
J. Mech. Behav. Biomed. Mater.
,
122
, p.
104680
.10.1016/j.jmbbm.2021.104680
22.
McIlvain
,
G.
,
Ganji
,
E.
,
Cooper
,
C.
,
Killian
,
M. L.
,
Ogunnaike
,
B. A.
, and
Johnson
,
C. L.
,
2019
, “
Reliable Preparation of Agarose Phantoms for Use in Quantitative Magnetic Resonance Elastography
,”
J. Mech. Behav. Biomed. Mater.
,
97
, pp.
65
73
.10.1016/j.jmbbm.2019.05.001
23.
Fagerstrom
,
J. M.
, and
Kaur
,
S.
,
2020
, “
Simple Phantom Fabrication for MRI-Based HDR Brachytherapy Applicator Commissioning
,”
J. Appl. Clin. Med. Phys.
,
21
(
11
), pp.
283
287
.10.1002/acm2.13039
24.
Bennani
,
V.
,
Inger
,
M.
, and
Aarts
,
J. M.
,
2014
, “
Comparison of Pressure Generated by Cordless Gingival Displacement Materials
,”
J. Prosthet. Dent.
,
112
(
2
), pp.
163
167
.10.1016/j.prosdent.2013.09.035
25.
Akkaya
,
H. E.
,
Erden
,
A.
,
Kuru Oz
,
D.
,
Unal
,
S.
, and
Erden
,
I.
,
Department of Radiology Karaman State Hospital, Karaman, Turkey
2018
, “
Magnetic Resonance Elastography: Basic Principles, Technique, and Clinical Applications in the Liver
,”
Diagn. Interventional Radiol.
,
24
(
6
), pp.
328
335
.10.5152/dir.2018.18186
26.
Asbach
,
P.
,
Klatt
,
D.
,
Hamhaber
,
U.
,
Braun
,
J.
,
Somasundaram
,
R.
,
Hamm
,
B.
, and
Sack
,
I.
,
2008
, “
Assessment of Liver Viscoelasticity Using Multifrequency MR Elastography
,”
Magn. Reson. Med.
,
60
(
2
), pp.
373
379
.10.1002/mrm.21636
27.
Feng
,
Y.
,
Zhu
,
M.
,
Qiu
,
S.
,
Shen
,
P.
,
Ma
,
S.
,
Zhao
,
X.
,
Hu
,
C.-h.
, and
Guo
,
L.
,
2018
, “
A Multi-Purpose Electromagnetic Actuator for Magnetic Resonance Elastography
,”
Magn. Reson. Imaging
,
51
, pp.
29
34
.10.1016/j.mri.2018.04.008
28.
Meinhold
,
W.
,
Ozkaya
,
E.
,
Petti
,
D.
,
Rice
,
V.
,
Triolo
,
E.
,
Rezayaraghi
,
F.
,
Kennedy
,
P.
,
Fleysher
,
L.
,
Hu
,
A.-P.
,
Ueda
,
J.
, and
Kurt
,
M.
,
2022
, “
Towards Image Guided Magnetic Resonance Elastography Via Active Driver Positioning Robot
,”
IEEE Trans. Biomed. Eng.
,
69
(
11
), pp.
3345
3355
.10.1109/TBME.2022.3168494
29.
Ehman
,
E. C.
,
Rossman
,
P. J.
,
Kruse
,
S. A.
,
Sahakian
,
A. V.
, and
Glaser
,
K. J.
,
2008
, “
Vibration Safety Limits for Magnetic Resonance Elastography
,”
Phys. Med. Biol.
,
53
(
4
), pp.
925
935
.10.1088/0031-9155/53/4/007
30.
Ramón
,
M. M.
,
Atwood
,
T.
,
Barbin
,
S.
, and
Christodoulou
,
C. G.
,
2009
, “Signal classification With an SVM-FFT Approach for Feature Extraction in Cognitive Radio,” 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (
IMOC
), Belem, Brazil, Nov. 3–6, pp.
286
289
.10.1109/IMOC.2009.5427579
31.
Pepin
,
K. M.
,
Welle
,
C. L.
,
Guglielmo
,
F. F.
,
Dillman
,
J. R.
, and
Venkatesh
,
S. K.
,
2022
, “
Magnetic Resonance Elastography of the Liver: Everything You Need to Know to Get Started
,”
Abdom. Radiol.
,
47
(
1
), pp.
94
114
.10.1007/s00261-021-03324-0
You do not currently have access to this content.