A novel, needle array dry electrode consisting of 10 × 10 array of stainless steel (SS) Microtips was developed for electroencephalography (EEG) monitoring. The developed dry electrode uses commercially available, inexpensive, SS acupuncture needles certified for invasive use, to collect the EEG signal. The microtips of the acupuncture needles project out of a flat Teflon base by approximately 150 μm. Mechanical failure analysis was carried out, with theoretical calculations for individual needles and experimental measurements with a universal testing machine (UTM). The theoretically calculated critical load for failure for individual needle was 0.88 N, while the UTM measurements show the failure occurring at 0.95 N; this difference is probably due to the simplified assumptions used in calculations. The UTM measurements of the individual needle applied against a Silicone elastomer reveal that the force required for the penetration of the needle of the electrode into skin maybe as low as 0.01 N. Needle array insertion into silicone elastomer sheet and its optical inspection was carried out to assess the ability of the microneedles to penetrate the skin. The impedance of the electrode, measured in three electrode configuration in 0.9% NaCl solution, was approximately 6.8KΩ at 20 Hz, which is sufficiently low to fulfill the requirements of biopotential measurement. The construction and characteristics of the developed needle array dry electrode show that they are suitable for penetrating the stratum corneum of the skin and acquire the EEG signal directly from the interstitial fluidic layer underneath. The construction of the electrode and its mechanical and electrical characteristics show that it is a promising dry electrode for long duration EEG Monitoring.

References

1.
Chi
,
Y. M.
,
Jung
,
T. P.
, and
Cauwenberghs
,
G.
,
2010
, “
Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review
,”
IEEE Rev. Biomed. Eng.
,
3
, pp.
106
119
.
2.
Chiou
,
J. C.
,
Ko
,
L. W.
,
Lin
,
C. T.
,
Hong
,
C. T.
,
Jung
,
T. P.
,
Liang
,
S. F.
, and
Jeng
,
J. L.
,
2006
, “
Using Novel MEMS EEG Sensors in Detecting Drowsiness Application
,”
IEEE Biomedical Circuits and Systems Conference
(
BioCAS
), London, Nov. 29–Dec. 1, pp.
33
36
.
3.
Griss
,
P.
,
Enoksson
,
P.
,
Tolvanen-Laakso
,
H. K.
,
Meriläinen
,
P.
,
Ollmar
,
S.
, and
Stemme
,
G.
,
2001
, “
Micromachined Electrodes for Biopotential Measurements
,”
J. Microelectro-Mech. Syst.
,
10
(
1
), pp.
10
16
.
4.
Griss
,
P.
,
Enoksson
,
P.
, and
Stemme
,
G.
,
2002
, “
Micromachined Barbed Spikes for Mechanical Chip Attachment
,”
Sens. Actuators A: Phys.
,
95
(
2–3
), pp.
94
99
.
5.
Wang
,
Y.
,
Guo
,
K.
,
Pei
,
W. H.
,
Gui
,
Q.
,
Li
,
X. Q.
,
Chen
,
H. D.
, and
Yang
,
J. H.
,
2011
, “
Fabrication of Dry Electrode for Recording Bio-Potentials
,”
Chin. Phys. Lett.
,
28
(
1
), p.
010701
.
6.
Ng
,
W. C.
,
Seet
,
H. L.
,
Lee
,
K. S.
,
Ning
,
N.
,
Tai
,
W. X.
,
Sutedja
,
M.
,
Fuh
,
J. Y. H.
, and
Li
,
X. P.
,
2009
, “
Micro-Spike EEG Electrode and the Vacuum-Casting Technology for Mass Production
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4434
4438
.
7.
Ren
,
L.
,
Jiang
,
Q.
,
Chen
,
K.
,
Chen
,
Z.
,
Pan
,
C.
, and
Jiang
,
L.
,
2016
, “
Fabrication of a Microneedle Array Electrode by Thermal Drawing for Biopotential Monitoring
,”
Sensors
,
16
(
6
), p.
908
.
8.
Yang
,
S.
,
Feng
,
Y.
,
Zhang
,
L.
,
Chen
,
N.
,
Yuan
,
W.
, and
Jin
,
T.
,
2012
, “
A Scalable Fabrication Process of Polymer Microneedles
,”
Int. J. Nanomed.
,
7
, pp.
1415
1422
.
9.
Gittard
,
S. D.
,
Ovsianikov
,
A.
,
Monteiro-Riviere
,
N. A.
,
Lusk
,
J.
,
Morel
,
P.
,
Minghetti
,
P.
,
Lenardi
,
C.
,
Chichkov
,
B. N.
, and
Narayan
,
R. J.
,
2009
, “
Fabrication of Polymer Microneedles Using a Two-Photon Polymerization and Micromolding Process
,”
J. Diabetes Sci. Technol.
,
3
(
2
), pp.
304
311
.
10.
Matteucci
,
M.
,
Carabalona
,
R.
,
Casella
,
M.
,
Di Fabrizio
,
E.
,
Gramatica
,
F.
,
Di Rienzo
,
M.
,
Snidero
,
E.
,
Gavioli
,
L.
, and
Sancrotti
,
M.
,
2007
, “
Micropatterned Dry Electrodes for Brain–Computer Interface
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
1737
1740
.
11.
Ruffini
,
G.
,
Dunne
,
S.
,
Farr´es
,
E.
,
Marco-Pallar´es
,
J.
,
Ray
,
C.
,
Mendoza
,
E.
,
Silva
,
R.
, and
Grau
,
C.
,
2006
, “
A Dry Electrophysiology Electrode Using CNT Arrays
,”
Sens. Actuators A
,
132
(
1
), pp.
34
41
.
12.
Watts
,
P. C.
,
Lyth
,
S. M.
,
Mendoza
,
S. M.
,
Silva
,
E.
, and
Ravi
,
S. P.
,
2006
, “
Polymer Supported Carbon Nanotube Arrays for Field Emission and Sensor Devices
,”
Appl. Phys. Lett.
,
89
(
10
), p.
103113
.
13.
Radhakrishnan
,
J. K.
,
Bhusan
,
H.
,
Pandian
,
P. S.
,
Rao
,
K. U. B.
,
Padaki
,
V. C.
,
Aatre
,
K.
,
Xie
,
J.
,
Abraham
,
J. K.
, and
Varadan
,
V. K.
,
2008
, “
Growth of CNT Array for Physiological Monitoring Applications
,”
Proc. SPIE
,
6931
, P. 69310P.
14.
Zhou
,
F. W.
,
Song
,
R.
,
Pan
,
X.
,
Peng
,
Y.
,
Qi
,
X.
,
Peng
,
J.
,
Hui
,
K. S.
, and
Hui
,
K. N.
,
2013
, “
Fabrication and Impedance Measurement of Novel Metal Dry Bioelectrode
,”
Sens. Actuators A: Phys.
,
201
, pp.
127
133
.
15.
Verbaan
,
F. J.
,
Bal
,
S. M.
,
Van den Berg
,
D. J.
,
Groenink
,
W. H.
,
Verpoorten
,
H.
,
Lüttge
,
R.
, and
Bouwstra
,
J. A.
,
2007
, “
Assembled Microneedle Arrays to Enhance the Transport of Compounds Varying Over a Large Range of Molecular Weight Across Human Dermatomed Skin
,”
J. Controlled Release
,
117
(
2
), pp.
238
245
.
16.
Kim
,
K.
,
Park
,
D. S.
,
Lu
,
H. M.
,
Che
,
W.
,
Kim
,
K.
,
Lee
,
J. B.
, and
Ahn
,
C. H.
,
2004
, “
A Tapered Hollow Metallic Microneedle Array Using Backside Exposure of SU
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
597
603
.
17.
Neethu
,
S.
,
Kulkarni
,
G. U.
,
Radhakrishnan
,
J. K.
, and
Padaki
,
V. C.
,
2013
, “
Tungsten Microneedle Array Based Dry Electrodes for Biopotential Monitoring
,”
First National Conference on Micro and Nanofabrication
, Bangalore, India, Jan. 21–23, p.
302
.
18.
Radhakrishnan
,
J. K.
,
Padaki
,
V. C.
,
Bhuvana
,
T.
, and
Kulkarni
,
G. U.
,
2014
, “
A Needle Array Electrode for Monitoring Physiological Electrical Signals and a Method of Manufacturing
,” Indian Technical Patent Application No: 1343/DEL/2014.
19.
Radhakrishnan
,
J. K.
,
Padaki
,
V. C.
,
Bhuvana
,
T.
, and
Kulkarni
,
G. U.
,
2014
, “
Needle Array Electrode', Indian Design Registration
,” Indian Design Patent No: 260239.
20.
Park
,
J. H.
, and
Prausnitz
,
M. R.
,
2010
, “
Analysis of the Mechanical Failure of Polymer Microneedles by Axial Force
,”
J. Korean Phys. Soc.
,
56
(
4
), pp.
1223
1227
.
21.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin'
,”
ASME J. Biomed. Eng.
,
127
(
5
), pp.
838
848
.
22.
Henry
,
S.
,
McAllistor
,
D. V.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
1998
, “
Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery
,”
J. Pharm. Sci.
,
87
, pp.
922
925
.
23.
Monteiro-Riviere
,
N. A.
,
2010
,
Toxicology of the Skin
,
CRC Press
,
Boca Raton, FL
.
24.
Radhakrishnan
,
J. K.
,
Padaki
,
V. C.
, and
Singh
,
U. K.
,
2017
, “
Mechanical Failure Analysis of Needles for Microneedle Array Dry-Electrodes
,”
Defence Life Sci. J.
,
2
(
4
), pp.
448
452
.
25.
Davis
,
S. P.
,
Landis
,
B. J.
,
Adams
,
Z. H.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2004
, “
Insertion of Microneedles Into Skin: Measurement and Prediction of Insertion Force and Needle Fracture Force
,”
J. Biomech.
,
37
(
8
), pp.
1155
1163
.
26.
Boonma
,
A.
,
Narayan
,
R. J.
, and
Lee
,
Y. S.
,
2013
, “
Analytical Modelling and Evaluation of Microneedles Apparatus With Deformable Tissues for Biomedical Applications
,”
Comput. Aided Des. Appl.
,
10
(
1
), pp.
139
157
.
27.
Geddes
,
L. A.
, and
Baker
,
L. E.
,
1968
,
Principles of Applied Biomedical Instrumentation
,
Wiley
,
New York
.
28.
Franks
,
W.
,
Schenker
,
I.
,
Schmutz
,
P.
, and
Hierlemann
,
A.
,
2005
, “
Impedance Characterization and Modelling of Electrodes for Biomedical Applications
,”
IEEE Trans. Biomed. Eng.
,
52
(
7
), pp.
1295
1302
.
29.
Bergey
,
G. E.
,
Squires
,
R. D.
, and
Sipple
,
W. C.
,
1971
, “
Electrocardiogram Recording With Pasteless Electrodes
,”
IEEE Trans. Biomed. Eng.
,
18
(
3
), pp.
206
211
.
30.
Rosell
,
J.
,
Colominas
,
J.
,
Riu
,
P.
,
Pallas-Areny
,
R.
, and
Webster
,
J. G.
,
1988
, “
Skin Impedance From 1 Hz to
,”
IEEE Trans. Biomed. Eng.
,
35
(
8
), pp.
649
651
.
31.
Hokajärvi
,
I. A.
,
2012
, “
Electrode Contact Impedance and Biopotential Signal Quality
,” M.S. thesis, Tampere University of Technology, Tampere, Finland.
32.
Kaitainen
,
S.
,
Kutvonen
,
A.
,
Suvanto
,
M.
,
Pakkanen
,
T. T.
,
Lappalainen
,
R.
, and
Myllymaa
,
S.
,
2014
, “
Liquid Silicone Rubber (LSR)- Based Dry Bioelectrodes: The Effect of Surface Micropillar Structuring and Silver Coating on Contact Impedance
,”
Sens. Actuators A: Phys.
,
206
, pp.
22
29
.
33.
Zander
,
T. O.
,
Lehne
,
M.
,
Ihme
,
K.
,
Jatzev
,
S.
,
Correia
,
J.
,
Kothe
,
C.
,
Picht
,
B.
, and
Nijboer
,
F.
,
2011
, “
A Dry EEG-System for Scientific Research and Brain—Computer Interfaces
,”
Front. Neurosci.
,
5
, pp.
1
10
.
You do not currently have access to this content.