Biomechanical energy harvesters (BMEHs) have shown that useable amounts of electricity can be generated from daily movement. Where access to an electrical power grid is limited, BMEHs are a viable alternative to accommodate energy requirements for portable electronics. In this paper, we present the detailed design and dynamic model of a lower limb-driven energy harvester that predicts the device output and the load on the user. Comparing with existing harvester models, the novelty of the proposed model is that it incorporates the energy required for useful electricity generation, stored inertial energy, and both mechanical and electrical losses within the device. The model is validated with the lower limb-driven energy harvester in 12 unique configurations with a combination of four different motor and three different electrical resistance combinations (3.5 Ω, 7 Ω, and 12 Ω). A case study shows that the device can generate between 3.6 and 15.5 W with an efficiency between 39.8% and 72.5%. The model was able to predict the harvester output peak voltage within 5.6 ± 3.2% error and the peak force it exerts on the user within 9.9 ± 3.4% error over a range of parameter values. The model will help to identify configurations to achieve a high harvester efficiency and provide a better understanding of how parameters affect both the timing and magnitude of the load felt by the user.

References

1.
Romero
,
E.
,
Warrington
,
R.
, and
Neuman
,
M.
,
2009
, “
Energy Scavenging Sources for Biomedical Sensors
,”
Physiol. Meas.
,
30
(
9
), pp.
R35
62
.
2.
Riemer
,
R.
, and
Shapiro
,
A.
,
2011
, “
Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions
,”
J. Neuroeng. Rehabil.
,
8
(
1
), pp.
22
35
.
3.
Schertzer
,
E.
, and
Riemer
,
R.
,
2015
, “
Harvesting Biomechanical Energy or Carrying Batteries? An Evaluation Method Based on a Comparison of Metabolic Power
,”
J. Neuroeng. Rehabil.
,
12
(
1
), pp.
30
42
.
4.
Niu
,
P.
,
Chapman
,
P.
,
Riemer
,
R.
, and
Zhang
,
X.
,
2004
, “
Evaluation of Motions and Actuation Methods for Biomechanical Energy Harvesting
,”
IEEE 35th Annual Power Electronics Specialists Conference
(
PESC 04
), Aachen, Germany, June 20–25, Vol.
3
, pp.
2100
2106
.
5.
Starner
,
T.
, and
Paradiso
,
J. A.
,
2004
, “
Human-Generated Power for Mobile Electronics
,”
Low-Power Electronics Design
, C. Piguet, ed.,
CRC Press
,
Boca Raton, FL
, Chap. 45.
6.
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
,
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2008
, “
Biomechanical Energy Harvesting: Apparatus and Method
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
3672
3677
.
7.
Xie
,
L.
, and
Du
,
R.
,
2012
, “
Harvest Human Kinetic Energy to Power Portable Electronics
,”
J. Mech. Sci. Technol.
,
26
(
7
), pp.
2005
2008
.
8.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
9.
Niu
,
P.
,
Chapman
,
P.
,
DiBerardino
,
L.
, and
Hsiao-Wecksler
,
E.
,
2008
, “
Design and Optimization of a Biomechanical Energy Harvesting Device
,”
Power Electronics Specialists Conference
(
PESC 2008
), Rhodes, Greece, June 15–19, pp.
4062
4069
.
10.
Von Buren
,
T.
,
Mitcheson
,
P. D.
,
Green
,
T. C.
,
Yeatman
,
E. M.
,
Holmes
,
A. S.
, and
Troster
,
G.
,
2006
, “
Optimization of Inertial Micropower Generators for Human Walking Motion
,”
IEEE Sens. J.
,
6
(
1
), pp.
28
38
.
11.
Romero
,
E.
,
Warrington
,
R. O.
, and
Neuman
,
M. R.
,
2009
, “
Body Motion for Powering Biomedical Devices
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC 2009
), Minneapolis, MN, Sept. 3–6, pp.
2752
2755
.
12.
Granstrom
,
J.
,
Feenstra
,
J.
,
Sodano
,
H. A.
, and
Farinholt
,
K.
,
2007
, “
Energy Harvesting From a Backpack Instrumented With Piezoelectric Shoulder Straps
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1810
1821
.
13.
Xie
,
L.
, and
Cai
,
M.
,
2015
, “
Development of a Suspended Backpack for Harvesting Biomechanical Energy
,”
ASME J. Mech. Des.
,
137
(
5
), p.
054503
.
14.
Hayashida
,
J. Y.
,
2000
, “
Unobtrusive Integration of Magnetic Generator Systems Into Common Footwear
,” Ph.D. thesis, Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA.
15.
Kornbluh
,
R. D.
,
Pelrine
,
R.
,
Pei
,
Q.
,
Heydt
,
R.
,
Stanford
,
S.
,
Oh
,
S.
, and
Eckerle
,
J.
,
2002
, “
Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation, and Smart Structures
,”
Proc. SPIE
,
4698
, pp.
254
270
.
16.
Gilbert
,
J. M.
, and
Balouchi
,
F.
,
2014
, “
Design and Optimisation of a Footfall Energy Harvesting System
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1746
1756
.
17.
Xie
,
L.
, and
Cai
,
M.
,
2015
, “
An In-Shoe Harvester With Motion Magnification for Scavenging Energy From Human Foot Strike
,”
IEEE/ASME Mechatronics
,
20
(
6
), pp.
3264
3268
.
18.
Dai
,
D.
, and
Liu
,
J.
,
2014
, “
Hip-Mounted Electromagnetic Generator to Harvest Energy From Human Motion
,”
Front. Energy
,
8
(
2
), pp.
173
181
.
19.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. Neuroeng. Rehabil.
,
6
(
1
), pp.
22
34
.
20.
Shepertycky
,
M.
, and
Li
,
Q.
,
2015
, “
Generating Electricity During Walking With a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort
,”
PLoS One
,
10
(
6
), p.
e0127635
.
21.
Rubinshtein
,
Z.
,
Riemer
,
R.
, and
Ben-Yaakov
,
S.
,
2012
, “
Modeling and Analysis of Brushless Generator Based Biomechanical Energy Harvesting System
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Raleigh, NC, Sept. 15–20, pp.
2784
2789
.
22.
Pozzi
,
M.
,
Aung
,
M. S.
,
Zhu
,
M.
,
Jones
,
R. K.
, and
Goulermas
,
J. Y.
,
2012
, “
The Pizzicato Knee-Joint Energy Harvester: Characterization With Biomechanical Data and the Effect of Backpack Load
,”
Smart Mater. Struct.
,
21
(
7
), p.
075023
.
23.
Donelan
,
J.
,
Li
,
Q.
,
Naing
,
V.
,
Hoffer
,
J.
,
Weber
,
D.
, and
Kuo
,
A.
,
2008
, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
,
319
(
5864
), pp.
807
810
.
24.
Dell,
2016
, “
Inspiron 1525/1526 Product Information
,” Dell, Round Rock, TX, http://support.dell.com/support/edocs/systems/ins1525/en/index.htm
25.
Nokia,
2008
,
Nokia 6301 Data Sheet
,” Nokia, Espoo, Finland.
26.
Ossur,
2009
,
Proprio Foot Technical Manual
,” Ossur, Reykjavík, Iceland, http://assets.ossur.com/lisalib/getfile.aspx?itemid=12360
27.
Shepertycky
,
M.
,
2013
, “
The Development and Performance Evaluation of an Energy Harvesting Backpack
,” M.S. thesis, Queen's University, Kingston, ON, Canada.
28.
Maxon Motors, 2016,
Maxon DC and EC Motors
,” Maxon Motors, Brünigstrasse, Switzerland, accessed June 5, 2014, www.maxonmotor.com
29.
SKF
,
2014
, “
The SKF Model for Calculating the Frictional Moment
,”
SKF
, Göteborg, Sweden.
30.
SKF
,
2010
, “Needle Roller Bearings,”
SKF
, Göteborg, Sweden.
31.
Shigley
,
J. E.
,
2011
,
Shigley's Mechanical Engineering Design
,
Tata McGraw-Hill Education
, New York.
32.
Lee
,
S. J.
, and
Hidler
,
J.
,
2008
, “
Biomechanics of Overground vs. Treadmill Walking in Healthy Individuals
,”
J. Appl. Physiol.
,
104
(
3
), pp.
747
755
.
33.
Riley
,
P. O.
,
Paolini
,
G.
,
Della Croce
,
U.
,
Paylo
,
K. W.
, and
Kerrigan
,
D. C.
,
2007
, “
A Kinematic and Kinetic Comparison of Overground and Treadmill Walking in Healthy Subjects
,”
Gait Posture
,
26
(
1
), pp.
17
24
.
You do not currently have access to this content.