The kinematics of the octopus’s arm is studied from the point of view of robotics. A continuum three-dimensional kinematic model of the arm, based on a nonlinear rod theory, is proposed. The model enables the calculation of the strains in various muscle fibers that are required in order to produce a given configuration of the arm—a solution to the inverse kinematics problem. The analysis of the forward kinematics problem shows that the strains in the muscle fibers at two distinct points belonging to a cross section of the arm determine the curvature and the twist of the arm at that cross section. The octopus’s arm lacks a rigid skeleton and the role of material incompressibility in enabling the configuration control is studied.

1.
Levinson
,
Y.
, 2008, “
On the Kinematics of the Octopus’s Arm
,” MS thesis, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva, Israel.
2.
Fahimi
,
F.
,
Ashrafiuon
,
H.
, and
Nataraj
,
C.
, 2002, “
An Improved Inverse Kinematic and Velocity Solution for Spatial Hyper-Redundant Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
1
), pp.
103
107
.
3.
Sujan
,
V. A.
, and
Dubowsky
,
S.
, 2004, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
29
39
.
4.
Yamada
,
H.
, and
Hirose
,
S.
, 2006, “
Study on the 3D Shape of Active Cord Mechanism
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2890
2895
.
5.
Gallardo
,
J.
,
Orozco
,
H.
,
Rico
,
J. M.
, and
Gonzalez-Galvan
,
E. J.
, 2009, “
A New Spatial Hyper-Redundant Manipulator
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
25
, pp.
703
708
.
6.
Chapelle
,
F.
, and
Bidaud
,
Ph.
, 2006, “
Evaluation Functions Synthesis for Optimal Design of Hyper-Redundant Robotic Systems
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
1196
1212
.
7.
Dasgupta
,
B.
,
Gupta
,
A.
, and
Gingla
,
E.
, 2009, “
A Variational Approach to Path Planning for Hyper-Redundant Manipulators
,”
Rob. Auton. Syst.
0921-8890,
57
, pp.
194
201
.
8.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
, 2008, “
Soft Robotics: Biological Inspiration, State of the Art and Future Research
,”
Applied Bionics and Biomechanics
,
5
, pp.
99
117
.
9.
Jones
,
B. A.
, and
Walker
,
I. D.
, 2006, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Robot.
,
22
, pp.
43
55
.
10.
Sugiyama
,
Y.
, and
Hirai
,
Sh.
, 2006, “
Crawling and Jumping by a Deformable Robots
,”
Int. J. Robot. Res.
0278-3649,
25
, pp.
603
620
.
11.
Li
,
C.
, and
Rahn
,
C. D.
, 2002, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
265
271
.
12.
Wakamatsu
,
H.
,
Arai
,
E.
, and
Hirai
,
Sh.
, 2006, “
Knotting/Unknotting Manipulation of Deformable Linear Objects
,”
Int. J. Robot. Res.
0278-3649,
25
, pp.
371
395
.
13.
Moll
,
M.
, and
Kavraki
,
L. E.
, 2006, “
Path Planning for Deformable Linear Objects
,”
IEEE Trans. Robot.
,
22
, pp.
625
636
.
14.
Saha
,
M.
, and
Isto
,
P.
, 2006, “
Motion Planning for Robotic Manipulation of Deformable Linear Objects
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2478
2484
.
15.
Theetten
,
A.
,
Grisoni
,
L.
,
Andriot
,
C.
, and
Barsky
,
B.
, 2008, “
Geometrically Exact Dynamic Splines
,”
Comput.-Aided Des.
0010-4485,
40
, pp.
35
48
.
16.
Jingzhou
,
Y.
,
Jason
,
P.
, and
Abdel-Malek
,
K.
, 2006, “
A Hyper-Redundant Continuous Robot
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1854
1859
.
17.
Yekutieli
,
Y.
,
Sagiv-Zohar
,
R.
,
Aharonov
,
R.
,
Engel
,
Y.
,
Hochner
,
B.
, and
Flash
,
T.
, 2005, “
Dynamic Model of the Octopus Arm I: Biomechanics of the Octopus Reaching Movement
,”
J. Neurophysiol.
0022-3077,
94
, pp.
1443
1458
.
18.
Yekutieli
,
Y.
,
Sagiv-Zohar
,
R.
,
Hochner
,
B.
, and
Flash
,
T.
, 2005, “
Dynamic Model of the Octopus Arm II: Control of Reaching Movements
,”
J. Neurophysiol.
0022-3077,
94
, pp.
1459
1468
.
19.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
, 1995, “
Kinematically Optimal Hyper-Redundant Manipulator Configurations
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
6
), pp.
794
806
.
20.
Zanganeh
,
K. E.
, and
Angeles
,
J.
, 1995, “
Inverse Kinematics of Hyper-Redundant Manipulators Using Splines
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, URL http://dx.doi.org/10.1109/ROBOT.1995.525679http://dx.doi.org/10.1109/ROBOT.1995.525679.
21.
Boyer
,
F.
,
Porez
,
M.
, and
Khalil
,
W.
, 2006, “
Macro-Continuous Computed Torque Algorithm for a Three-Dimensional Eel-Like Robot
,”
IEEE Trans. Robot.
,
22
(
4
), pp.
763
775
.
22.
Antman
,
S. S.
, 2006, “
A Priori Bounds on Spatial Motions of Incompressible Nonlinearly Elastic Rods
,”
Journal of Hyperbolic Differential Equations
,
3
(
3
), pp.
481
504
.
23.
Kier
,
W. M.
, and
Smith
,
K. K.
, 1985, “
Tongues, Tentacles and Trunks: The Biomechanics of Movement in Muscular-Hydrostats
,”
Zool. J. Linn. Soc.
,
83
, pp.
307
324
.
24.
Kier
,
W.
, and
Stella
,
M.
, 2007, “
The Arrangement and Function of Octopus Arm Musculature and Connective Tissue
,”
J. Morphol.
0362-2525,
268
, pp.
831
843
.
25.
Villaggio
,
P.
, 1997,
Mathematical Models for Elastic Structures
,
Cambridge University Press
,
Cambridge, England
.
26.
Struik
,
D.
, 1961,
Lectures on Classical Differential Geometry
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.