Abstract

Purpose: The purpose of this paper is to investigate the optimal geometrical design of concentric tube robots (CTR) for intracerebral hemorrhage (ICH) evacuation, with a focus on minimizing the risk of damaging white matter tracts and cerebral arteries. Methods: To achieve our objective, we propose a parametrization method describing a general class of CTR geometric designs. We present mathematical models that describe the CTR design constraints and provide the calculation of a path risk value. We then use the genetic algorithm to determine the optimal tube geometry for targeting within the brain. Results: Our results show that a multi-tube CTR design can significantly reduce the risk of damaging critical brain structures compared to the conventional straight tube design. However, there is no significant relationship between the path risk value and the number and shape of the additional inner curved tubes. Conclusion: Considering the challenges of CTR hardware design, fabrication, and control, we conclude that the most feasible geometry for a CTR path in ICH treatment is a straight outer tube followed by a planar curved inner tube. These findings have important implications for the development of safe and effective CTRs for ICH evacuation by enabling dexterous manipulation to minimize damage to critical brain structures.

References

1.
Poon
,
M. T. C.
,
Fonville
,
A. F.
, and
Al-Shahi Salman
,
R.
,
2014
, “
Long-Term Prognosis After Intracerebral Haemorrhage: Systematic Review and Meta-Analysis
,”
J. Neurol. Neurosurg. Psychiatry
,
85
(
6
), pp.
660
667
.
2.
Wang
,
W.
,
Zhou
,
N.
, and
Wang
,
C.
,
2017
, “
Minimally Invasive Surgery for Patients With Hypertensive Intracerebral Hemorrhage With Large Hematoma Volume: A Retrospective Study
,”
World Neurosurg.
,
105
, pp.
348
358
.
3.
Fiorella
,
D.
,
Zuckerman
,
S. L.
,
Khan
,
I. S.
,
Ganesh Kumar
,
N.
, and
Mocco
,
J.
,
2015
, “
Intracerebral Hemorrhage: A Common and Devastating Disease in Need of Better Treatment
,”
World Neurosurg.
,
84
(
4
), pp.
1136
1141
.
4.
Maira
,
G.
,
Anile
,
C.
,
Colosimo
,
C.
, and
Rossi
,
G. F.
,
2002
, “
Surgical Treatment of Primary Supratentorial Intracerebral Hemorrhage in Stuporous and Comatose Patients
,”
Neurol. Res.
,
24
(
1
), pp.
54
60
.
5.
Hanley
,
D. F.
,
Thompson
,
R. E.
,
Muschelli
,
J.
,
Rosenblum
,
M.
,
McBee
,
N.
,
Lane
,
K.
,
Bistran-Hall
,
A. J.
, et al
,
2016
, “
Safety and Efficacy of Minimally Invasive Surgery Plus Alteplase in Intracerebral Haemorrhage Evacuation (MISTIE): A Randomised, Controlled, Open-Label, Phase 2 Trial
,”
Lancet Neurol.
,
15
(
12
), pp.
1228
1237
.
6.
Zuccarello
,
M.
,
Brott
,
T.
,
Derex
,
L.
,
Kothari
,
R.
,
Sauerbeck
,
L.
,
Tew
,
J.
,
Van Loveren
,
H.
, et al,
1999
, “
Early Surgical Treatment for Supratentorial Intracerebral Hemorrhage: A Randomized Feasibility Study
,”
Stroke
,
30
(
9
), pp.
1833
1839
.
7.
Teernstra
,
O. P. M.
,
Evers
,
S.
,
Lodder
,
J.
,
Leffers
,
P.
,
Franke
,
C.
, and
Blaauw
,
G.
,
2003
, “
Stereotactic Treatment of Intracerebral Hematoma by Means of a Plasminogen Activator: A Multicenter Randomized Controlled Trial (SICHPA)
,”
Stroke
,
34
(
4
), pp.
968
974
.
8.
Kim
,
Y. Z.
, and
Kim
,
K. H.
,
2009
, “
Even in Patients With a Small Hemorrhagic Volume, Stereotactic-Guided Evacuation of Spontaneous Intracerebral Hemorrhage Improves Functional Outcome
,”
J. Korean Neurosurg. Soc.
,
46
(
2
), p.
109
.
9.
Sun
,
H.
,
Liu
,
H.
,
Li
,
D.
,
Liu
,
L.
,
Yang
,
J.
, and
Wang
,
W.
,
2010
, “
An Effective Treatment for Cerebral Hemorrhage: Minimally Invasive Craniopuncture Combined With Urokinase Infusion Therapy
,”
Neurol. Res.
,
32
(
4
), pp.
371
377
.
10.
Wang
,
W.-Z.
,
Jiang
,
B.
,
Liu
,
G.-M.
,
Li
,
D.
,
Lu
,
C.-Z.
,
Zhao
,
Y.-D.
, and
Sander
,
J.
,
2009
, “
Minimally Invasive Craniopuncture Therapy vs. Conservative Treatment for Spontaneous Intracerebral Hemorrhage: Results From a Randomized Clinical Trial in China
,”
Int. J. Stroke
,
4
(
1
), pp.
11
16
.
11.
Zhou
,
H.
,
Zhang
,
Y.
,
Liu
,
L.
,
Han
,
X.
,
Tao
,
Y.
,
Tang
,
Y.
,
Hua
,
W.
,
Xue
,
J.
, and
Dong
,
Q.
,
2011
, “
A Prospective Controlled Study: Minimally Invasive Stereotactic Puncture Therapy Versus Conventional Craniotomy in the Treatment of Acute Intracerebral Hemorrhage
,”
BMC Neurol.
,
11
(
1
), pp.
1
8
.
12.
Yang
,
G.
, and
Shao
,
G.
,
2016
, “
Clinical Effect of Minimally Invasive Intracranial Hematoma in Treating Hypertensive Cerebral Hemorrhage
,”
Pak. J. Med. Sci.
,
32
(
3
), p.
677
.
13.
Vespa
,
P.
,
Hanley
,
D.
,
Betz
,
J.
,
Hoffer
,
A.
,
Engh
,
J.
,
Carter
,
R.
,
Nakaji
,
P.
, et al
,
2016
, “
ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for Brain Hemorrhage: A Multicenter Randomized Controlled Trial
,”
Stroke
,
47
(
11
), pp.
2749
2755
.
14.
Miller
,
C. M.
,
Vespa
,
P.
,
Saver
,
J. L.
,
Kidwell
,
C. S.
,
Carmichael
,
S. T.
,
Alger
,
J.
,
Frazee
,
J.
, et al
,
2008
, “
Image-Guided Endoscopic Evacuation of Spontaneous Intracerebral Hemorrhage
,”
Surg. Neurol.
,
69
(
5
), pp.
441
446
.
15.
Auer
,
L. M.
,
Deinsberger
,
W.
,
Niederkorn
,
K.
,
Gell
,
G.
,
Kleinert
,
R.
,
Schneider
,
G.
,
Holzer
,
P.
, et al
,
1989
, “
Endoscopic Surgery Versus Medical Treatment for Spontaneous Intracerebral Hematoma: A Randomized Study
,”
J. Neurosurg.
,
70
(
4
), pp.
530
535
.
16.
Zhang
,
H.-Z.
,
Li
,
Y.-P.
,
Yan
,
Z.-C.
,
Wang
,
X.-D.
,
She
,
L.
,
Wang
,
X.-D.
, and
Dong
,
L.
,
2014
, “
Endoscopic Evacuation of Basal Ganglia Hemorrhage via Keyhole Approach Using an Adjustable Cannula in Comparison With Craniotomy
,”
BioMed Res. Int.
,
2014
, pp.
1
6
.
17.
Feng
,
Y.
,
He
,
J.
,
Liu
,
B.
,
Yang
,
L.
, and
Wang
,
Y.
,
2016
, “
Endoscope-Assisted Keyhole Technique for Hypertensive Cerebral Hemorrhage in Elderly Patients: A Randomized Controlled Study in 184 Patients
,”
Turk. Neurosurg.
,
26
(
1
), pp.
84
89
.
18.
Hattori
,
N.
,
Katayama
,
Y.
,
Maya
,
Y.
, and
Gatherer
,
A.
,
2004
, “
Impact of Stereotactic Hematoma Evacuation on Activities of Daily Living During the Chronic Period Following Spontaneous Putaminal Hemorrhage: A Randomized Study
,”
J. Neurosurg.
,
101
(
3
), pp.
417
420
.
19.
Cho
,
D.-Y.
,
Chen
,
C.-C.
,
Chang
,
C.-S.
,
Lee
,
W.-Y.
, and
Tso
,
M.
,
2006
, “
Endoscopic Surgery for Spontaneous Basal Ganglia Hemorrhage: Comparing Endoscopic Surgery, Stereotactic Aspiration, and Craniotomy in Noncomatose Patients
,”
Surg. Neurol.
,
65
(
6
), pp.
547
555
.
20.
Bajaj
,
J.
,
Yadav
,
Y. R.
,
Pateriya
,
A.
,
Parihar
,
V.
,
Ratre
,
S.
, and
Dubey
,
A.
,
2017
, “
Indigenous Inexpensive Practice Models for Skill Development in Neuroendoscopy
,”
J. Neurosci. Rural Pract.
,
8
(
2
), pp.
170
173
.
21.
Wang
,
W.-H.
,
Hung
,
Y.-C.
,
Hsu
,
S. P.
,
Lin
,
C.-F.
,
Chen
,
H.-H.
,
Shih
,
Y.-H.
, and
Lee
,
C.-C.
,
2015
, “
Endoscopic Hematoma Evacuation in Patients With Spontaneous Supratentorial Intracerebral Hemorrhage
,”
J. Chin. Med. Assoc.
,
78
(
2
), pp.
101
107
.
22.
Fukuhara
,
A.
,
Tsujita
,
T.
,
Sase
,
K.
,
Konno
,
A.
,
Nakagawa
,
A.
,
Endo
,
T.
,
Tominaga
,
T.
,
Jiang
,
X.
,
Abiko
,
S.
, and
Uchiyama
,
M.
,
2016
, “
Securing an Optimum Operating Field Without Undesired Tissue Damage in Neurosurgery
,”
Adv. Robot. Syst.
,
30
(
19
), pp.
1245
1259
.
23.
Zhang
,
Y.
,
Shan
,
A.-J.
,
Peng
,
Y.-P.
,
Lei
,
P.
,
Xu
,
J.
,
Zhong
,
X.
, and
Du
,
B.
,
2019
, “
The Intra-Neuroendoscopic Technique (INET): A Modified Minimally Invasive Technique for Evacuation of Brain Parenchyma Hematomas
,”
World J. Emerg. Surg.
,
14
(
1
), p.
21
.
24.
Trnovec
,
S.
,
Halatsch
,
M.-E.
,
Putz
,
M.
,
Behnke-Mursch
,
J.
, and
Mursch
,
K.
,
2012
, “
Irrigation Can Cause Prolonged Intracranial Pressure Elevations During Endoscopic Treatment of Intraventricular Haematomas
,”
Br. J. Neurosurg.
,
26
(
2
), pp.
247
251
.
25.
Hannah
,
T. C.
,
Kellner
,
R.
, and
Kellner
,
C. P.
,
2021
, “
Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques: A Review
,”
Diagnostics
,
11
(
3
), p.
576
.
26.
Gilbert
,
H. B.
,
Rucker
,
D. C.
, and
Webster
,
R. J.
III
,
2016
, “
Concentric Tube Robots: The State of the Art and Future Directions
,”
Rob. Res.
,
114
, pp.
253
269
.
27.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p. 020801.
28.
Xiao
,
Q.
,
Musa
,
M.
,
Godage
,
I. S.
,
Su
,
H.
, and
Chen
,
Y.
,
2023
, “
Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051011
.
29.
Granna
,
J.
,
Godage
,
I. S.
,
Wirz
,
R.
,
Weaver
,
K. D.
,
Webster
,
R. J.
, and
Burgner-Kahrs
,
J.
,
2016
, “
A 3-D Volume Coverage Path Planning Algorithm With Application to Intracerebral Hemorrhage Evacuation
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
876
883
.
30.
Gilbert
,
H. B.
,
Neimat
,
J.
, and
Webster
,
R. J.
,
2015
, “
Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
246
258
.
31.
Sears
,
P.
, and
Dupont
,
P.
,
2006
, “
A Steerable Needle Technology Using Curved Concentric Tubes
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
,
IEEE
, pp.
2850
2856
.
32.
Burgner
,
J.
,
Swaney
,
P. J.
,
Lathrop
,
R. A.
,
Weaver
,
K. D.
, and
Webster
,
R. J.
,
2013
, “
Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation
,”
IEEE Trans. Biomed. Eng.
,
60
(
9
), pp.
2567
2575
.
33.
Doody
,
M. M.
,
Lonstein
,
J. E.
,
Stovall
,
M.
,
Hacker
,
D. G.
,
Luckyanov
,
N.
,
Land
,
C. E.
, and
Collaborators, U. S. C. S.
,
2000
, “
Breast Cancer Mortality After Diagnostic Radiography: Findings From the US Scoliosis Cohort Study
,”
Spine
,
25
(
16
), pp.
2052
2063
.
34.
Godage
,
I. S.
,
Remirez
,
A. A.
,
Wirz
,
R.
,
Weaver
,
K. D.
,
Burgner-Kahrs
,
J.
, and
Webster
,
R. J.
,
2015
, “
Robotic Intracerebral Hemorrhage Evacuation: An in-Scanner Approach With Concentric Tube Robots
,”
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
,
IEEE
, pp.
1447
1452
.
35.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
,
1995
, “
Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guid. Surg.
,
1
(
4
), pp.
242
248
.
36.
Pandya
,
S.
,
Motkoski
,
J. W.
,
Serrano-Almeida
,
C.
,
Greer
,
A. D.
,
Latour
,
I.
, and
Sutherland
,
G. R.
,
2009
, “
Advancing Neurosurgery With Image-Guided Robotics
,”
J. Neurosurg.
,
111
(
6
), pp.
1141
1149
.
37.
Sheng
,
J.
, and
Desai
,
J. P.
,
2015
, “
Towards a SMA-Actuated Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
,”
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
,
IEEE
, pp.
3805
3810
.
38.
Su
,
H.
,
Li
,
G.
,
Rucker
,
D. C.
,
Webster
,
R. J.
III
, and
Fischer
,
G. S.
,
2016
, “
A Concentric Tube Continuum Robot With Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2863
2873
.
39.
Chen
,
Y.
,
Godage
,
I. S.
,
Sengupta
,
S.
,
Liu
,
C. L.
,
Weaver
,
K. D.
, and
Barth
,
E. J.
,
2019
, “
MR-Conditional Steerable Needle Robot for Intracerebral Hemorrhage Removal
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
1
), pp.
105
115
.
40.
Gunderman
,
A. L.
,
Sengupta
,
S.
,
Siampli
,
E.
,
Sigounas
,
D. G.
,
Kellner
,
C. P.
,
Oluigbo
,
C. O.
,
Sharma
,
K.
,
Godage
,
I.
,
Cleary
,
K. R.
, and
Chen
,
Y.
,
2023
, “
Non-Metallic MR-Guided Concentric Tube Robot for Intracerebral Hemorrhage Evacuation
,”
IEEE Trans. Biomed. Eng.
41.
Shamir
,
R. R.
,
Tamir
,
I.
,
Dabool
,
E.
,
Joskowicz
,
L.
, and
Shoshan
,
Y.
,
2010
, “
A Method for Planning Safe Trajectories in Image-Guided Keyhole Neurosurgery
,”
Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010: 13th International Conference, Part III 13
,
Beijing, China, Sept. 20–24
,
Springer
, pp.
457
464
.
42.
Shamir
,
R. R.
,
Joskowicz
,
L.
,
Tamir
,
I.
,
Dabool
,
E.
,
Pertman
,
L.
,
Ben-Ami
,
A.
, and
Shoshan
,
Y.
,
2012
, “
Reduced Risk Trajectory Planning in Image-Guided Keyhole Neurosurgery
,”
Med. Phys.
,
39
(
5
), pp.
2885
2895
.
43.
Flaßkamp
,
K.
,
Worthmann
,
K.
,
Mühlenhoff
,
J.
,
Greiner-Petter
,
C.
,
Büskens
,
C.
,
Oertel
,
J.
,
Keiner
,
D.
, and
Sattel
,
T.
,
2019
, “
Towards Optimal Control of Concentric Tube Robots in Stereotactic Neurosurgery
,”
Math. Comput. Modell. Dyn. Syst.
,
25
(
6
), pp.
560
574
.
44.
Kunz
,
C.
,
Gerst
,
M.
,
Henrich
,
P.
,
Schneider
,
M.
,
Hlavac
,
M.
,
Pala
,
A.
, and
Mathis-Ullrich
,
F.
,
2021
, “
Multimodal Risk-Based Path Planning for Neurosurgical Interventions
,”
ASME J. Med. Devices
,
15
(
1
), p. 011108.
45.
Peikert
,
S.
,
Kunz
,
C.
,
Fischer
,
N.
,
Hlaváč
,
M.
,
Pala
,
A.
,
Schneider
,
M.
, and
Mathis-Ullrich
,
F.
,
2022
, “
Automated Linear and Non-Linear Path Planning for Neurosurgical Interventions
,”
Proceedings of the 2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
,
IEEE
, pp.
7731
7737
.
46.
Beaulieu
,
C.
,
2002
, “
The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review
,”
NMR Biomed.
,
15
(
7–8
), pp.
435
455
.
47.
Hess
,
C. P.
, and
Mukherjee
,
P.
,
2007
, “
Visualizing White Matter Pathways in the Living Human Brain: Diffusion Tensor Imaging and Beyond
,”
Neuroimaging Clin. N. Am.
,
17
(
4
), pp.
407
426
.
48.
Zhang
,
N.
,
Zhang
,
F.
,
Deng
,
Z.
,
Yang
,
Q.
,
Diniz
,
M. A.
,
Song
,
S. S.
,
Schlick
,
K. H.
,
Marcel Maya
,
M.
,
Gonzalez
,
N.
, and
Li
,
D.
,
2018
, “
3D Whole-Brain Vessel Wall Cardiovascular Magnetic Resonance Imaging: A Study on the Reliability in the Quantification of Intracranial Vessel Dimensions
,”
J. Cardiovasc. Magn. Reson.
,
20
(
1
), pp.
1
12
.
49.
Yang
,
Q.
,
Deng
,
Z.
,
Bi
,
X.
,
Song
,
S. S.
,
Schlick
,
K. H.
,
Gonzalez
,
N. R.
,
Li
,
D.
, and
Fan
,
Z.
,
2017
, “
Whole-Brain Vessel Wall MRI: A Parameter Tune-up Solution to Improve the Scan Efficiency of Three-Dimensional Variable Flip-Angle Turbo Spin-Echo
,”
J. Magn. Reson. Imaging
,
46
(
3
), pp.
751
757
.
50.
Katoch
,
S.
,
Chauhan
,
S. S.
, and
Kumar
,
V.
,
2021
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimed. Tools Appl.
,
80
(
5
), pp.
8091
8126
.
51.
Toponogov
,
V. A.
,
2006
, “Differential Geometry of Curves and Surfaces: A Concise Guide,”
Differential Geometry of Curves and Surfaces: A Concise Guide
,
V. Y.
Rovenski
,
ed., Boston, MA
, pp.
1
206
.
52.
Corbetta
,
M.
,
Ramsey
,
L.
,
Callejas
,
A.
,
Baldassarre
,
A.
,
Hacker
,
C. D.
,
Siegel
,
J. S.
,
Astafiev
,
S. V.
, et al
,
2015
, “
Common Behavioral Clusters and Subcortical Anatomy in Stroke
,”
Neuron
,
85
(
5
), pp.
927
941
.
53.
Labib
,
M. A.
,
Shah
,
M.
,
Kassam
,
A. B.
,
Young
,
R.
,
Zucker
,
L.
,
Maioriello
,
A.
,
Britz
,
G.
,
Agbi
,
C.
,
Day
,
J.
, and
Gallia
,
G.
,
2017
, “
The Safety and Feasibility of Image-Guided Brainpath-Mediated Transsulcul Hematoma Evacuation: A Multicenter Study
,”
Neurosurgery
,
80
(
4
), pp.
515
524
.
54.
Panesar
,
S. S.
,
Abhinav
,
K.
,
Yeh
,
F.-C.
,
Jacquesson
,
T.
,
Collins
,
M.
, and
Fernandez-Miranda
,
J.
,
2019
, “
Tractography for Surgical Neuro-Oncology Planning: Towards a Gold Standard
,”
Neurotherapeutics
,
16
(
1
), pp.
36
51
.
55.
Yeh
,
F. C.
,
Panesar
,
S.
,
Fernandes
,
D.
,
Meola
,
A.
,
Yoshino
,
M.
,
Fernandez-Miranda
,
J. C.
,
Vettel
,
J. M.
, and
Verstynen
,
T.
,
2018
, “
Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology
,”
Neuroimage
,
178
(
1
), pp.
57
68
.
56.
Mouches
,
P.
, and
Forkert
,
N. D.
,
2019
, “
A Statistical Atlas of Cerebral Arteries Generated Using Multi-Center MRA Datasets From Healthy Subjects
,”
Sci. Data
,
6
(
1
), p.
29
.
57.
Ray
,
N.
,
Saha
,
B. N.
, and
Brown
,
M. R. G.
,
2007
, “
Locating Brain Tumors From MR Imagery Using Symmetry
,”
Proceedings of the 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
.,
Nov. 4–7
,
IEEE
, pp.
224
228
.
58.
Shen
,
J.
,
Wang
,
Y.
,
Azizkhani
,
M.
,
Qiu
,
D.
, and
Chen
,
Y.
,
2023
, “
Concentric Tube Robot Redundancy Resolution via Velocity/Compliance Manipulability Optimization
,”
IEEE Robot. Autom. Lett.
,
8
(
11
), pp.
7495
7502
.
You do not currently have access to this content.