Abstract

Redundant non-serial manipulators that include a spectrum of parallel and non-parallel heavy load bearing construction and material handling equipment are treated, using foundations of differential geometry. Kinematics of this category of manipulator are defined in manipulator configuration space by algebraic equations in input and output coordinates that cannot be explicitly solved for either as a function of the other. New sets called assembly components of manipulator configuration space are defined that partition the space into maximal, path-connected, disjoint, topological components. All configurations within an assembly component can be connected by one or more continuous paths within that component, but configurations in different assembly components cannot be connected by continuous paths. Forward and inverse kinematically singular configurations are characterized by criteria that partition each assembly component into path-connected, singularity-free assembly components in which equations of kinematics and dynamics are well behaved. It is shown that a generalized inverse velocity-based kinematic formulation that is problematic for serial manipulators is likewise plagued with problems for non-serial implicit manipulators that can be avoided using the methods presented. Singularity-free differentiable manipulator configuration space components are defined and parameterized by both input and operational coordinates, leading to well-posed ordinary differential equations of manipulator dynamics in both input and operational coordinates. Three typical applications and associated model problems are studied throughout the paper to illustrate the methods and results presented.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lee
,
S.
, and
Bejczy
,
A. K.
,
1991
, “
Redundant Arm Kinematic Control Based on Parameterization
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, pp.
458
465
.
2.
Khatib
,
O.
,
1993
, “
The Operational Space Framework
,”
JSME Int. J., Ser. C
,
36
(
3
), pp.
277
287
.
3.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Maciejewski
,
A. A.
,
2016
, “Redundant Robots,” B. Siciliano and O. Khatib eds,
Springer Handbook of Robotics
, 2nd ed.,
Springer-Verlag
,
Berlin
.
4.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Machine Syst.
,
10
(
2
), pp.
47
53
.
5.
Haug
,
E. J.
,
2024
, “
Redundant Non-Serial Compound Manipulator Kinematics and Dynamics
,”
J. Mech. Rob.
, in review.
6.
Haug
,
E. J.
,
2024
, “
Redundant Serial Manipulator Inverse Position Kinematics and Dynamics
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081008
.
7.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics, Reprint by Ox Bow Press (1979)
,
Woodbridge
,
Conn
.
8.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Manipulators
,”
J. Intell. Rob. Sys.
,
86
(
2
), pp.
175
198
.
9.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
10.
Haug
,
E. J.
, and
Peidro
,
A.
,
2022
, “
Redundant Manipulator Kinematics and Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
11
), p.
111008
.
11.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
12.
Burdick
,
J. W.
,
1989
, “
On the Inverse Kinematics of Redundant Manipulators: Characterization of the Self-Motion Manifolds
,”
Proceedings of the 1989 IEEE International Conference on Robot Automation
,
Scottsdale AZ
, pp.
264
270
.
13.
Mendelson
,
B.
,
1962
,
Introduction to Topology
,
Allyn and Bacon
,
Boston, MA
.
14.
Guillemin
,
V.
, and
Pollack
,
A.
,
1974
,
Differential Topology
,
AMS Chelsea Publishing
,
Providence, RI
.
15.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1998
, “
Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
73
79
.
16.
Bamberger
,
H.
,
Wolf
,
A.
, and
Shoham
,
M.
,
2008
, “
Assembly Mode Changing in Parallel Mechanisms
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
765
772
.
17.
Urízar
,
M.
,
Petuya
,
V.
,
Altuzarra
,
O.
, and
Hernández
,
A.
,
2012
, “
Assembly Mode Changing in the Cuspidal Analytic 3RPR
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
506
513
.
18.
Peidró
,
A.
,
Marín
,
J. M.
,
Gil
,
A.
, and
Reinoso
,
O.
,
2015
, “
Performing Nonsingular Transitions Between Assembly Modes in Analytic Parallel Manipulators by Enclosing Quadruple Solutions
,”
ASME J. Mech. Des.
,
137
(
12
), p.
122302
.
19.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd Ed.,
Wiley
,
New York
.
20.
Haug
,
E. J.
,
2024
, “
A Cyclic Differentiable Manifold Representation of Redundant Manipulator Kinematics
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061005
.
21.
Peidro
,
A.
, and
Haug
,
E. J.
,
2024
, “
Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators
,”
Machines
,
12
(
10
).
22.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
23.
De Luca
,
A.
, and
Oriolo
,
G.
,
1997
, “
Nonholonomic Behavior in Redundant Robots Under Kinematic Control
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
776
782
.
24.
Shamir
,
T.
, and
Yomdin
,
Y.
,
1988
, “
Repeatability of Redundant Manipulators: Mathematical Solution of the Problem
,”
IEEE Trans. Automat. Contr.
,
33
(
11
), pp.
1004
1009
.
25.
Zanchettin
,
A. M.
,
Rocco
,
P.
, and
Ferretti
,
G.
,
2010
, “
Numerical Issues in Integrating Holonomic Kinematic Inversion Algorithms for Redundant Manipulators
,” Proceedings of the
8th IFAC Symposium on Nonlinear Control Systems
,
Bologna, Italy
,
Sept. 1–3
, pp.
999
1004
.
26.
Haug
,
E. J.
,
2024
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume II: Modern Methods
, 4th ed.,
Amazon.com
.
You do not currently have access to this content.