Abstract

The multi-component stacked assembly of electric vehicle batteries has the characteristic of rigid-flexible hybrids between contact surfaces, such as aerogel thermal insulation pads, which challenges assembly quality control of large-scale and high-speed manufacturing. This article proposes an approach using the weighted objective function of assembly (WFA) to solve the hybrid assembly problem. In order to predict the interface contact state of the rigid-flexible hybrid assembly, the approach considers the distance constraint, the interference constraints, and the equilibrium equation to transform the rigid-flexible hybrid assembly problem into a weighted optimization problem. The target dimension distribution is obtained by leveraging an enhanced genetic algorithm, which combines the elite retention strategy and the targeted gene mutation method. Moreover, the WFA model can be applied not only to consider the dimensional tolerance and the flexible deformation during the assembly process, but also to carry out the coupling analysis under different loading conditions. The accuracy and efficiency of the proposed method are exhibited through an industrial case study of battery stacked assembly. While maintaining computational accuracy, a significant reduction in time costs is achieved, making it applicable for dimensional distribution predictions that rely on Monte Carlo simulations. The proposed WFA method can be applied to support the design and prediction of battery stacked assembly or other rigid-flexible coupled assembly.

References

1.
Kwade
,
A.
,
Haselrieder
,
W.
,
Leithoff
,
R.
,
Modlinger
,
A.
,
Dietrich
,
F.
, and
Droeder
,
K.
,
2018
, “
Current Status and Challenges for Automotive Battery Production Technologies
,”
Nat. Energy
,
3
(
4
), pp.
290
300
.
2.
Yeo
,
J.
,
Liu
,
Z.
, and
Ng
,
T. Y.
,
2020
,
Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties
,
Springer International Publishing
,
Cham
, pp.
1575
1595
.
3.
Yang
,
X.
,
Duan
,
Y.
,
Feng
,
X.
,
Chen
,
T.
,
Xu
,
C.
,
Rui
,
X.
,
Ouyang
,
M.
, et al.,
2020
, “
An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together
,”
Fire Technol.
,
56
(
6
), pp.
2579
2602
.
4.
Wang
,
Y.
,
Luo
,
X.
,
Li
,
Q.
,
Wang
,
W.
,
Du
,
Q.
,
Yang
,
H.
,
Qiu
,
L.
,
Zhang
,
Z.
, and
Shen
,
J.
,
2023
, “
Industrial Application of SiO2 Aerogel Prepared by Supercritical Ethanol (SCE) Drying Technique as Cold and Heat Insulation Materials
,”
J. Sol-Gel. Sci. Technol.
,
106
(
2
), pp.
341
348
.
5.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
6.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
7.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press
,
Boca Raton, FL
.
8.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
9.
Yue
,
J.
,
Camelio
,
J. A.
,
Chin
,
M.
, and
Cai
,
W.
,
2006
, “
Product-Oriented Sensitivity Analysis for Multistation Compliant Assemblies
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
844
851
.
10.
Camelio
,
J. A.
,
Jack Hu
,
S.
, and
Ceglarek
,
D. J.
,
2002
, Impact of Fixture Design Sheet Metal Assembly Variation, Volume 3: 7th Design for Manufacturing Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
11.
Cai
,
W.
,
2008
, “
Fixture Optimization for Sheet Panel Assembly Considering Welding Gun Variations
,”
Proc. Inst. Mech. Eng. C
,
222
(
2
), pp.
235
246
.
12.
Long
,
Y.
,
2000
,
Variation Simulation for Compliant Sheet Metal Assemblies With Applications
,
University of Michigan
,
Ann Arbor, MI
.
13.
Jin
,
S.
,
Yu
,
K.
,
Lai
,
X.
, and
Liu
,
Y.
,
2009
, “
Sensor Placement Strategy for Fixture Variation Diagnosis of Compliant Sheet Metal Assembly Process
,”
Assem. Automat.
,
29
(
4
), pp.
358
363
.
14.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
, et al.,
2010
, “
Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies
,” DS 61: Proceedings of NordDesign 2010, The 8th International NordDesign Conference, Göteborg, Sweden, Aug. 25–27, pp.
519
528
.
15.
Mounaud
,
M.
,
Thiébaut
,
F.
,
Bourdet
,
P.
,
Falgarone
,
H.
, and
Chevassus
,
N.
,
2011
, “
Assembly Sequence Influence on Geometric Deviations Propagation of Compliant Parts
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1021
1043
.
16.
Choi
,
W.
, and
Chung
,
H.
,
2015
, “
Variation Simulation of Compliant Metal Plate Assemblies Considering Welding Distortion
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031008
.
17.
Lorin
,
S.
,
Lindkvist
,
L.
,
Söderberg
,
R.
, and
Sandboge
,
R.
,
2013
, “
Combining Variation Simulation With Thermal Expansion Simulation for Geometry Assurance
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
031007
.
18.
Sun
,
Y.
,
Shi
,
J.
,
Yang
,
Y.
,
Du
,
M.
, and
Cao
,
H.
,
2025
, “
Extended Influence Coefficient Method for Meshing Stiffness Evaluation of Spur Gears Considering Rotor Flexibility
,”
Mech. Syst. Signal Process.
,
224
, p.
112075
.
19.
Cai
,
W. W.
,
Hsieh
,
C.-C.
,
Long
,
Y.
,
Marin
,
S. P.
, and
Oh
,
K. P.
,
2005
, “
Digital Panel Assembly Methodologies and Applications for Compliant Sheet Components
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
270
279
.
20.
Mazur
,
M.
,
Leary
,
M.
, and
Subic
,
A.
,
2011
, “
Computer Aided Tolerancing (CAT) Platform for the Design of Assemblies Under External and Internal Forces
,”
Comput.-Aided Des.
,
43
(
6
), pp.
707
719
.
21.
Korbi
,
A.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
BenAmara
,
A.
,
2018
, “
CAD/Tolerancing Integration: A New Approach for Tolerance Analysis of Non-Rigid Parts Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5
), pp.
2003
2013
.
22.
Guo
,
J.
,
Li
,
B.
,
Liu
,
Z.
,
Hong
,
J.
, and
Wu
,
X.
,
2016
, “
Integration of Geometric Variation and Part Deformation Into Variation Propagation of 3-D Assemblies
,”
Int. J. Prod. Res.
,
54
(
19
), pp.
5708
5721
.
23.
Zeng
,
W.
, and
Rao
,
Y.
,
2019
, “
Modeling of Assembly Deviation With Considering the Actual Working Conditions
,”
Int. J. Precis. Eng. Manuf.
,
20
(
5
), pp.
791
803
.
24.
Ma
,
S.
,
Hu
,
T.
, and
Xiong
,
Z.
,
2021
, “
Precision Assembly Simulation of Skin Model Shapes Accounting for Contact Deformation and Geometric Deviations for Statistical Tolerance Analysis Method
,”
Int. J. Precis. Eng. Manuf.
,
22
(
6
), pp.
975
989
.
25.
Anwer
,
N.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2013
, “
The Skin Model, A Comprehensive Geometric Model for Engineering Design
,”
CIRP Ann. – Manuf. Technol.
,
62
(
1
), pp.
143
146
.
26.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput.-Aided Des.
,
50
(
Complete
), pp.
1
15
.
27.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann.–Manuf. Technol.
,
63
(
1
), pp.
137
140
.
28.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2016
, “
Status and Prospects of Skin Model Shapes for Geometric Variations Management
,”
Proc. CIRP
,
43
(
C
), pp.
154
159
.
29.
Zhu
,
Z.
,
Qiao
,
L.
, and
Anwer
,
N.
,
2016
, “
An Improved Tolerance Analysis Method Based on Skin Model Shapes of Planar Parts
,”
Proc. CIRP
,
56
(
Complete
), pp.
237
242
.
30.
Liu
,
T.
,
Cao
,
Y.-L.
,
Zhao
,
Q.
,
Yang
,
J.
, and
Cui
,
L.
,
2019
, “
Assembly Tolerance Analysis Based on the Jacobian Model and Skin Model Shapes
,”
Assem. Automat.
,
39
(
2
), pp.
245
253
.
31.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2015
, “
Contact and Mobility Simulation for Mechanical Assemblies Based on Skin Model Shapes
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021009
.
32.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Tolerance Analysis of Rotating Mechanism Based on Skin Model Shapes in Discrete Geometry
,”
Proc. CIRP
,
27
, pp.
10
15
.
33.
Yi
,
Y.
,
Liu
,
X.
,
Liu
,
T.
, and
Ni
,
Z.
,
2021
, “
A Generic Integrated Approach of Assembly Tolerance Analysis Based on Skin Model Shapes
,”
Proc. Inst. Mech. Eng. B
,
235
(
4
), pp.
689
704
.
34.
Corrado
,
A.
, and
Polini
,
W.
,
2018
, “
FEA Integration in the Tolerance Analysis Using Skin Model Shapes
,”
Proc. CIRP
,
75
, pp.
285
290
.
35.
Liu
,
J.
,
Zhang
,
Z.
,
Ding
,
X.
, and
Shao
,
N.
,
2018
, “
Integrating Form Errors and Local Surface Deformations Into Tolerance Analysis Based on Skin Model Shapes and a Boundary Element Method
,”
Comput.-Aided Des.
,
104
(
C
), pp.
45
59
.
36.
Yan
,
X.
, and
Ballu
,
A.
,
2018
, “
Tolerance Analysis Using Skin Model Shapes and Linear Complementarity Conditions
,”
J. Manuf. Syst.
,
48
, pp.
140
156
.
37.
Yu
,
P.
,
Xue
,
D.
,
Huang
,
S.
, and
Yu
,
J.
,
2021
, “
Research on the Contact State Method Considering the True Topography of the Part Surface
,”
J. Phys.: Conf. Ser.
,
2026
(
1
), p.
012057
.
38.
Li
,
H.
,
Zhu
,
H.
,
Li
,
P.
, and
He
,
F.
,
2014
, “
Tolerance Analysis of Mechanical Assemblies Based on Small Displacement Torsor and Deviation Propagation Theories
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
89
99
.
39.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Approaches for the Assembly Simulation of Skin Model Shapes
,”
Comput. Aided Des.
,
65
(
C
), pp.
18
33
.
40.
Katoch
,
S.
,
Chauhan
,
S. S.
, and
Kumar
,
V.
,
2021
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimedia Tools Appl.
,
80
(
5
), pp.
8091
8126
.
41.
Jebari
,
K.
,
2013
, “
Selection Methods for Genetic Algorithms
,”
Int. J. Emerg. Sci.
,
3
(
4
), pp.
333
344
. https://www.researchgate.net/publication/259461147_Selection_Methods_for_Genetic_Algorithms
42.
Fu
,
C.
,
Zhang
,
L.
,
Wang
,
X.
, and
Qiao
,
L.
,
2018
, “
Solving TSP Problem With Improved Genetic Algorithm
,”
AIP Conf. Proc.
,
1967
(
1
), p.
040057
.
43.
Zhang
,
M.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Zhao
,
H.
,
2011
, “
A Discrete Geometry Framework for Geometrical Product Specifications
,”
Interdisciplinary Design: Proceedings of the 21st CIRP Design Conference
,
Daejeon, South Korea
,
Mar. 27–29
, p.
142
.
44.
Zhang
,
M.
,
Anwer
,
N.
,
Stockinger
,
A.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2013
, “
Discrete Shape Modeling for Skin Model Representation
,”
Proc. Inst. Mech. Eng. B
,
227
(
5
), pp.
672
680
.
You do not currently have access to this content.