Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Recent research in the field of design engineering is primarily focusing on using AI technologies such as Large Language Models (LLMs) to assist early-stage design. The engineer or designer can use LLMs to explore, validate, and compare thousands of generated conceptual stimuli and make final choices. This was seen as a significant stride in advancing the status of the generative approach in computer-aided design. However, it is often difficult to instruct LLMs to obtain novel conceptual solutions and requirement-compliant in real design tasks, due to the lack of transparency and insufficient controllability of LLMs. This study presents an approach to leverage LLMs to infer Function–Behavior–Structure (FBS) ontology for high-quality design concepts. Prompting design based on the FBS model decomposes the design task into three sub-tasks including functional, behavioral, and structural reasoning. In each sub-task, prompting templates and specification signifiers are specified to guide the LLMs to generate concepts. User can determine the selected concepts by judging and evaluating the generated function–structure pairs. A comparative experiment has been conducted to evaluate the concept generation approach. According to the concept evaluation results, our approach achieves the highest scores in concept evaluation, and the generated concepts are more novel, useful, functional, and low cost compared to the baseline.

References

1.
Goldschmidt
,
G.
, and
Tatsa
,
D.
,
2005
, “
How Good Are Good Ideas? Correlates of Design Creativity
,”
Des. Stud.
,
26
(
6
), pp.
593
611
.
2.
Gamble
,
K. R.
, and
Kellner
,
H.
,
1968
, “
Creative Functioning and Cognitive Regression
,”
J. Pers. Soc. Psychol.
,
9
(
3
), pp.
266
271
.
3.
Min
,
B.
,
Ross
,
H.
,
Sulem
,
E.
,
Veyseh
,
A. P. B.
,
Nguyen
,
T. H.
,
Sainz
,
O.
,
Agirre
,
E.
,
Heintz
,
I.
, and
Roth
,
D.
,
2023
, “
Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
,”
ACM Comput. Surv.
,
56
(
2
), pp.
1
40
.
4.
Bubeck
,
S.
,
Chandrasekaran
,
V.
,
Eldan
,
R.
,
Gehrke
,
J.
,
Horvitz
,
E.
,
Kamar
,
E.
,
Lee
,
P.
,
Lee
,
Y. T.
,
Li
,
Y.
, and
Lundberg
,
S.
,
2023
, “
Sparks of Artificial General Intelligence: Early Experiments With gpt-4
,” arXiv preprint arXiv:2303.12712.
5.
Bouschery
,
S. G.
,
Blazevic
,
V.
, and
Piller
,
F. T.
,
2023
, “
Augmenting Human Innovation Teams With Artificial Intelligence: Exploring Transformer-Based Language Models
,”
J. Prod. Innov. Manage.
,
40
(
2
), pp.
139
153
.
6.
Lee
,
M.
,
Liang
,
P.
, and
Yang
,
Q.
, “
Coauthor: Designing a Human-AI Collaborative Writing Dataset for Exploring Language Model Capabilities
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29
, pp.
1
19
.
7.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “Generative Design Ideation: A Natural Language Generation Approach,”
Design Computing and Cognition’22
,
Q.
Zhu
, and
L.
Jianxi
, eds.,
Springer
,
New York
, pp.
39
50
.
8.
Zou
,
X.
,
Yin
,
D.
,
Zhong
,
Q.
,
Yang
,
H.
,
Yang
,
Z.
, and
Tang
,
J.
, “
Controllable Generation From pre-Trained Language Models via Inverse Prompting
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Barcelona, Spain
,
Aug. 14
, pp.
2450
2460
.
9.
Wu
,
T.
,
Terry
,
M.
, and
Cai
,
C. J.
, “
Ai Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 29
, pp.
1
22
.
10.
Gehman
,
S.
,
Gururangan
,
S.
,
Sap
,
M.
,
Choi
,
Y.
, and
Smith
,
N. A.
, “
Real Toxicity Prompts: Evaluating Neural Toxic Degeneration in Language Models
,”
Findings of the Association for Computational Linguistics: EMNLP 2020
,
Virtual Conference
,
Sept. 24
, pp.
3356
3369
.
11.
Bender
,
E. M.
,
Gebru
,
T.
,
McMillan-Major
,
A.
, and
Shmitchell
,
S.
, “
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?
,”
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
,
Rio de Janeiro, Brazil
,
Mar. 3
, pp.
610
623
.
12.
French
,
M. J.
,
Gravdahl
,
J.
, and
French
,
M.
,
1985
,
Conceptual Design for Engineers
,
Springer
,
New York
.
13.
Salter
,
A.
, and
Gann
,
D.
,
2003
, “
Sources of Ideas for Innovation in Engineering Design
,”
Res. Policy
,
32
(
8
), pp.
1309
1324
.
14.
Beitz
,
W.
,
Pahl
,
G.
, and
Grote
,
K.
,
1996
, “
Engineering Design: A Systematic Approach
,”
MRS Bull.
,
71
(
8
).
15.
Childs
,
P.
,
Han
,
J.
,
Chen
,
L.
,
Jiang
,
P.
,
Wang
,
P.
,
Park
,
D.
,
Yin
,
Y.
,
Dieckmann
,
E.
, and
Vilanova
,
I.
,
2022
, “
The Creativity Diamond—A Framework to Aid Creativity
,”
J. Intell.
,
10
(
4
), p.
73
.
16.
Kaufman
,
J. C.
,
Plucker
,
J. A.
, and
Baer
,
J.
,
2008
,
Essentials of Creativity Assessment
,
John Wiley and Sons
,
Hoboken, NJ
.
17.
Siegel
,
D. J.
,
2015
,
Brainstorm: The Power and Purpose of the Teenage Brain
,
Penguin
,
Toronto
.
18.
Alʹtshuller
,
G. S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center, Inc.
,
Worcester, MA
19.
Vosniadou
,
S.
, and
Ortony
,
A.
,
1989
,
Similarity and Analogical Reasoning
,
Cambridge University Press
,
Cambridge
.
20.
Zuo
,
H.
,
Jing
,
Q.
,
Song
,
T.
,
Sun
,
L.
,
Childs
,
P.
, and
Chen
,
L.
,
2022
, “
WikiLink: An Encyclopedia-Based Semantic Network for Design Creativity
,”
J. Intell.
,
10
(
4
), p.
103
.
21.
Self
,
J.
,
Evans
,
M.
, and
Kim
,
E. J.
,
2016
, “
A Comparison of Digital and Conventional Sketching: Implications for Conceptual Design Ideation
,”
J. Des. Res.
,
14
(
2
), pp.
171
202
.
22.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R.
,
2018
, “
A Computational Tool for Creative Idea Generation Based on Analogical Reasoning and Ontology
,”
AI EDAM
,
32
(
4
), pp.
462
477
.
23.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
24.
Gonçalves
,
M.
,
Cardoso
,
C.
, and
Badke-Schaub
,
P.
,
2016
, “
Inspiration Choices That Matter: The Selection of External Stimuli During Ideation
,”
Des. Sci.
,
2
, p.
e10
.
25.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), pp.
26
26
.
26.
Chakrabarti
,
A.
,
2002
,
Engineering Design Synthesis: Understanding, Approaches and Tools
,
Springer Science & Business Media
,
London
.
27.
Hamraz
,
B.
, and
Clarkson
,
P. J.
,
2015
, “
Industrial Evaluation of FBS Linkage–A Method to Support Engineering Change Management
,”
J. Eng. Des.
,
26
(
1–3
), pp.
24
47
.
28.
Daalhuizen
,
J.
,
Badke-Schaub
,
P.
, and
Batill
,
S. M.
,
2009
, “
Dealing With Uncertainty in Design Practice: Issues for Designer-Centered Methodology
,”
DS 58-9: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 9, Human Behavior in Design
,
Palo Alto, CA
,
Aug. 24–27
, pp.
147
158
.
29.
Gunel
,
B.
,
Du
,
J.
,
Conneau
,
A.
, and
Stoyanov
,
V.
,
2020
, “
Supervised Contrastive Learning for Pre-Trained Language Model Fine-Tuning
,” arXiv preprint arXiv:2011.01403.
30.
Church
,
K. W.
,
2017
, “
Word2Vec
,”
Nat. Lang. Eng.
,
23
(
1
), pp.
155
162
.
31.
Pennington
,
J.
,
Socher
,
R.
, and
Manning
,
C. D.
, “
Glove: Global Vectors for Word Representation
,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
Doha, Qatar
,
Oct. 25
, pp.
1532
1543
.
32.
Peters
,
M.
,
Neumann
,
M.
,
Iyyer
,
M.
,
Gardner
,
M.
,
Clark
,
C.
,
Lee
,
K.
, and
Zettlemoyer
,
L.
,
2018
, “
Deep Contextualized Word Representations. ArXiv 2018
,” arXiv preprint arXiv:1802.05365, 12.
33.
Kenton
,
J. D. M.-W. C.
, and
Toutanova
,
L. K.
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of NAACL-HLT
,
Minneapolis, MN
,
June 2
, pp.
4171
4186
.
34.
Touvron
,
H.
,
Martin
,
L.
,
Stone
,
K.
,
Albert
,
P.
,
Almahairi
,
A.
,
Babaei
,
Y.
,
Bashlykov
,
N.
,
Batra
,
S.
,
Bhargava
,
P.
, and
Bhosale
,
S.
,
2023
, “
Llama 2: Open Foundation and Fine-Tuned Chat Models
,” arXiv preprint arXiv:2307.09288.
35.
Chung
,
H. W.
,
Hou
,
L.
,
Longpre
,
S.
,
Zoph
,
B.
,
Tay
,
Y.
,
Fedus
,
W.
,
Li
,
Y.
,
Wang
,
X.
,
Dehghani
,
M.
, and
Brahma
,
S.
,
2024
, “
Scaling Instruction-Finetuned Language Models
,”
J. Mach. Learn. Res.
,
25
(
70
), pp.
1
53
.
36.
Muennighoff
,
N.
,
Wang
,
T.
,
Sutawika
,
L.
,
Roberts
,
A.
,
Biderman
,
S.
,
Le Scao
,
T.
,
Bari
,
M. S.
,
Shen
,
S.
,
Yong
,
Z. X.
, and
Schoelkopf
,
H.
, “
Crosslingual Generalization Through Multitask Finetuning
,”
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
,
Toronto, Canada
,
July 9
, pp.
15991
16111
.
37.
Radford
,
A.
,
Narasimhan
,
K.
,
Salimans
,
T.
, and
Sutskever
,
I.
,
2018
, “Improving Language Understanding by Generative Pre-Training,” https://openai.com/index/language-unsupervised/
38.
Radford
,
A.
,
Wu
,
J.
,
Child
,
R.
,
Luan
,
D.
,
Amodei
,
D.
, and
Sutskever
,
I.
,
2019
, “
Language Models Are Unsupervised Multitask Learners
,”
OpenAI Blog
,
1
(
8
), p.
9
.
39.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
,
Shyam
,
P.
,
Sastry
,
G.
, and
Askell
,
A.
,
2020
, “
Language Models Are Few-Shot Learners
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
1877
1901
.
40.
Achiam
,
J.
,
Adler
,
S.
,
Agarwal
,
S.
,
Ahmad
,
L.
,
Akkaya
,
I.
,
Aleman
,
F. L.
,
Almeida
,
D.
,
Altenschmidt
,
J.
,
Altman
,
S.
, and
Anadkat
,
S.
,
2023
, “
Gpt-4 Technical Report
,” arXiv preprint arXiv:2303.08774.
41.
Zhu
,
Q.
, and
Luo
,
J.
,
2022
, “
Generative Pre-Trained Transformer for Design Concept Generation: An Exploration
,”
Proc. Des. Soc.
,
2
, pp.
1825
1834
.
42.
Ma
,
K.
,
Grandi
,
D.
,
McComb
,
C.
, and
Goucher-Lambert
,
K.
, “
Conceptual Design Generation Using Large Language Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20
,
American Society of Mechanical Engineers
, p.
V006T006A021
.
43.
Makatura
,
L.
,
Foshey
,
M.
,
Wang
,
B.
,
HähnLein
,
F.
,
Ma
,
P.
,
Deng
,
B.
,
Tjandrasuwita
,
M.
,
Spielberg
,
A.
,
Owens
,
C. E.
, and
Chen
,
P. Y.
,
2023
, “
How Can Large Language Models Help Humans in Design and Manufacturing?
,” arXiv preprint arXiv:2307.14377.
44.
Gero
,
J. S.
, and
Kannengiesser
,
U.
, “
Function-Behaviour-Structure: A Model for Social Situated Agents,”
Proceedings of the Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions, International Joint Conference on Artificial Intelligence
,
Macao, China
,
August
, p.
107
.
45.
Touvron
,
H.
,
Lavril
,
T.
,
Izacard
,
G.
,
Martinet
,
X.
,
Lachaux
,
M.-A.
,
Lacroix
,
T.
,
Rozière
,
B.
,
Goyal
,
N.
,
Hambro
,
E.
, and
Azhar
,
F.
,
2023
, “
Llama: Open and Efficient Foundation Language Models
,” arXiv preprint arXiv:2302.13971.
46.
Manyika
,
J.
, and
Hsiao
,
S.
,
2023
, “An Overview of Bard: An Early Experiment With Generative AI,” Google Static Documents, 2.
47.
Wei
,
J.
,
Bosma
,
M.
,
Zhao
,
V.
,
Guu
,
K.
,
Yu
,
A. W.
,
Lester
,
B.
,
Du
,
N.
,
Dai
,
A. M.
, and
Le
,
Q. V.
, “
Finetuned Language Models are Zero-Shot Learners
,”
Proceedings of the International Conference on Learning Representations
,
Virtual Conference
,
Oct. 6
.
48.
Liu
,
A. T.
,
Xiao
,
W.
,
Zhu
,
H.
,
Zhang
,
D.
,
Li
,
S.-W.
, and
Arnold
,
A.
,
2022
, “
QaNER: Prompting Question Answering Models for Few-Shot Named Entity Recognition
,” arXiv preprint arXiv:2203.01543.
49.
Liu
,
P.
,
Yuan
,
W.
,
Fu
,
J.
,
Jiang
,
Z.
,
Hayashi
,
H.
, and
Neubig
,
G.
,
2023
, “
Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
,”
ACM Comput. Surv.
,
55
(
9
), pp.
1
35
.
50.
Chang
,
M.
,
Druga
,
S.
,
Fiannaca
,
A. J.
,
Vergani
,
P.
,
Kulkarni
,
C.
,
Cai
,
C. J.
, and
Terry
,
M.
, “
The Prompt Artists
,”
Proceedings of the 15th Conference on Creativity and Cognition
,
Virtual Conference
,
June 19
, pp.
75
87
.
51.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Xia
,
F.
,
Chi
,
E.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
, “
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
,”
Adv. Neural Inf. Process. Syst.
,
35
, pp.
24824
24837
.
52.
Reynolds
,
L.
, and
McDonell
,
K.
, “
Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm
,”
Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems
,
New York
,
May 8
, pp.
1
7
.
53.
Gilbert
,
H.
,
Sandborn
,
M.
,
Schmidt
,
D. C.
,
Spencer-Smith
,
J.
, and
White
,
J.
, “
Semantic Compression With Large Language Models
,”
Proceedings of the 2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS)
,
Abu Dhabi, UAE
,
Nov. 21
,
IEEE
, pp.
1
8
.
54.
Li
,
Y.
,
2023
, “
Unlocking Context Constraints of Llms: Enhancing Context Efficiency of Llms with Self-Information-Based Content Filtering
,” arXiv preprint arXiv:2304.12102.
55.
Walker
,
M.
,
Takayama
,
L.
, and
Landay
,
J. A.
, “
High-Fidelity or Low-Fidelity, Paper or Computer? Choosing Attributes When Testing Web Prototypes
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
,
Sage Publications Sage CA
,
Los Angeles, CA
,
Sept. 1
, pp.
661
665
.
56.
Pugh
,
S.
,
1990
,
Total Design
,
Addison-Wesley
,
Reading, MA
.
57.
Demirbilek
,
O.
, and
Sener
,
B.
,
2003
, “
Product Design, Semantics and Emotional Response
,”
Ergonomics
,
46
(
13–14
), pp.
1346
1360
.
58.
Han
,
J.
,
Forbes
,
H.
, and
Schaefer
,
D.
, “
An Exploration of the Relations Between Functionality, Aesthetics and Creativity in Design
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, Netherlands
,
Aug. 5
,
Cambridge University Press
, pp.
259
268
.
59.
Sung
,
W. O.
,
Chung
,
K.-W.
, and
Nam
,
K.-Y.
,
2009
, “
Reflections on Design Excellence Through International Product Design Award Schemes
,”
Des. J.
,
12
(
2
), pp.
171
194
.
60.
Ulrich
,
K. T.
,
Eppinger
,
S. D.
, and
Yang
,
M. C.
,
2008
,
Product Design and Development
,
McGraw-Hill Higher Education
,
Boston, MA
.
61.
Fleiss
,
J. L.
,
1971
, “
Measuring Nominal Scale Agreement among Many Raters
,”
Psychol. Bull.
,
76
(
5
), pp.
378
382
.
62.
Ziems
,
N.
,
Yu
,
W.
,
Zhang
,
Z.
, and
Jiang
,
M.
,
2023
, “
Large Language Models Are Built-In Autoregressive Search Engines
,”
Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023
, pp.
2666
2678
.
63.
Kauf
,
C.
,
Ivanova
,
A. A.
,
Rambelli
,
G.
,
Chersoni
,
E.
,
She
,
J. S.
,
Chowdhury
,
Z.
,
Fedorenko
,
E.
, and
Lenci
,
A.
,
2023
, “
Event Knowledge in Large Language Models: The Gap Between the Impossible and the Unlikely
,”
Cognit. Sci.
,
47
(
11
), p.
e13386
.
64.
Bédard
,
J.
, and
Chi
,
M. T.
,
1992
, “
Expertise
,”
Curr. Dir. Psychol. Sci.
,
1
(
4
), pp.
135
139
.
65.
Wiley
,
J.
,
1998
, “
Expertise as Mental Set: The Effects of Domain Knowledge in Creative Problem Solving
,”
Mem. Cogn.
,
26
(
4
), pp.
716
730
.
66.
Smith
,
R.
,
Fries
,
J. A.
,
Hancock
,
B.
, and
Bach
,
S. H.
, “
Language Models in the Loop: Incorporating Prompting Into Weak Supervision
,”
ACM/JMS J. Data Sci.
,
1
(
2
).
67.
Liu
,
V.
, and
Chilton
,
L. B.
, “
Design Guidelines for Prompt Engineering Text-to-Image Generative Models
,”
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
,
New York, NY
,
Apr. 29
, pp.
1
23
.
68.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2019
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
2
), pp.
493
503
.
69.
Malaga
,
R. A.
,
2000
, “
The Effect of Stimulus Modes and Associative Distance in Individual Creativity Support Systems
,”
Decis. Support Syst.
,
29
(
2
), pp.
125
141
.
70.
Ranjan
,
B.
,
Siddharth
,
L.
, and
Chakrabarti
,
A.
,
2018
, “
A Systematic Approach to Assessing Novelty, Requirement Satisfaction, and Creativity
,”
AI EDAM
,
32
(
4
), pp.
390
414
.
71.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
72.
Murphy
,
K. P.
,
2012
,
Machine Learning: a Probabilistic Perspective
,
MIT Press
,
Cambridge, MA
.
73.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R.
,
2018
, “
The Combinator–A Computer-Based Tool for Creative Idea Generation Based on a Simulation Approach
,”
Des. Sci.
,
4
, p.
e11
.
You do not currently have access to this content.