Abstract

Engineering simulations for analysis of structural and fluid systems require information of contacts between various 3D surfaces of the geometry to accurately model the physics between them. In machine learning applications, 3D surfaces are most suitably represented with point clouds or meshes and learning representations of interacting geometries form point-based representations is challenging. The objective of this study is to introduce a machine learning algorithm, ActivationNet, that can learn from point clouds or meshes of interacting 3D surfaces and predict the quality of contact between these surfaces. The ActivationNet generates activation states from point-based representation of surfaces using a multidimensional binning approach. The activation states are further used to contact quality between surfaces using deep neural networks. The performance of our model is demonstrated using several experiments, and we show that the contact quality predictions of ActivationNet agree well with the expectations.

References

1.
Heinstein
,
M.
,
Attaway
,
S.
,
Swegle
,
J.
, and
Mello
,
F.
,
1993
, “A General-Purpose Contact Detection Algorithm for Nonlinear Structural Analysis Codes,”
Sandia National Labs
,
Albuquerque, NM
, Technical Report.
2.
Munjiza
,
A.
,
Owen
,
D.
, and
Bicanic
,
N.
,
1995
, “
A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids
,”
Eng. Comput.
,
12
(
2
), pp.
145
174
.
3.
Munjiza
,
A.
,
Andrews
,
K.
, and
White
,
J.
,
1999
, “
Combined Single and Smeared Crack Model in Combined Finite-Discrete Element Analysis
,”
Int. J. Numer. Methods Eng.
,
44
(
1
), pp.
41
57
.
4.
Rougier
,
E.
,
2009
, “Discrete Element Method for Simulation of Gas Micro-Flows,” Ph.D. thesis,
Queen Mary, University of London
,
London
.
5.
Munjiza
,
A. A.
,
Knight
,
E. E.
, and
Rougier
,
E.
,
2011
,
Computational Mechanics of Discontinua
,
John Wiley & Sons
,
Hoboken, NJ
.
6.
Schiava d’Albano
,
G. G.
,
Munjiza
,
A.
, and
Lukas
,
T.
,
2013
, “
Novel MS (Munjizaschiava) Contact Detection Algorithm on Multicore PC
,”
PARTICLES III: Proceedings of the III International Conference on Particle-Based Methods: Fundamentals and Applications
,
Stuttgart, Germany
,
Sept. 18–20
, pp.
35
45
.
7.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
Voxnet: A 3D Convolutional Neural Network for Real-Time Object Recognition
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, IEEE, pp.
922
928
.
8.
Yi
,
L.
,
Kim
,
V. G.
,
Ceylan
,
D.
,
Shen
,
I.-C.
,
Yan
,
M.
,
Su
,
H.
,
Lu
,
C.
,
Huang
,
Q.
,
Sheffer
,
A.
, and
Guibas
,
L.
,
2016
, “
A Scalable Active Framework for Region Annotation in 3D Shape Collections
,”
ACM Trans. Graph.
,
35
(
6
), pp.
1
12
.
9.
Qi
,
C. R.
,
Su
,
H.
,
Nießner
,
M.
,
Dai
,
A.
,
Yan
,
M.
, and
Guibas
,
L. J.
,
2016
, “
Volumetric and Multi-View CNNS for Object Classification on 3D Data
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
.
10.
Grilli
,
E.
,
Menna
,
F.
, and
Remondino
,
F.
,
2017
, “
A Review of Point Clouds Segmentation and Classification Algorithms
,”
Int. Arch. Photogrammetry, Remote Sensing Spatial Inform. Sci.
,
42
, p.
339
.
11.
Johnson
,
A. E.
, and
Hebert
,
M.
,
1999
, “
Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
21
(
5
), pp.
433
449
.
12.
Chen
,
H.
, and
Bhanu
,
B.
,
2007
, “
3D Free-Form Object Recognition in Range Images Using Local Surface Patches
,”
Pattern Recog. Lett.
,
28
(
10
), pp.
1252
1262
.
13.
Zhong
,
Y.
,
2009
, “
A Shape Descriptor for 3D Object Recognition
,”
Proceedings ICCV 2009 Workshop 3DRR
,
Kyoto, Japan
,
Sept. 27–Oct. 4
.
14.
Rusu
,
R. B.
,
Blodow
,
N.
,
Marton
,
Z. C.
, and
Beetz
,
M.
,
2008
, “
Aligning Point Cloud Views Using Persistent Feature Histograms
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
3384
3391
.
15.
Rusu
,
R. B.
,
Blodow
,
N.
, and
Beetz
,
M.
,
2009
, “
Fast Point Feature Histograms (FPFH) for 3D Registration
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
3212
3217
.
16.
Tombari
,
F.
,
Salti
,
S.
, and
Di Stefano
,
L.
,
2010
, “
Unique Shape Context for 3D Data Description
,”
Proceedings of the ACM Workshop on 3D Object Retrieval
,
Firenze, Italy
,
Oct. 25
, pp.
57
62
.
17.
Chen
,
D.-Y.
,
Tian
,
X.-P.
,
Shen
,
Y.-T.
, and
Ouhyoung
,
M.
,
2003
, “
On Visual Similarity Based 3D Model Retrieval
,”
Computer Graphics Forum
,
Granada, Spain
,
Sept. 1–5
, pp.
223
232
.
18.
Hänsch
,
R.
,
Weber
,
T.
, and
Hellwich
,
O.
,
2014
, “
Comparison of 3D Interest Point Detectors and Descriptors for Point Cloud Fusion
,”
ISPRS Annal. Photogrammetry, Remote Sensing Spatial Inform. Sci.
,
2
(
3
), p.
57
.
19.
Ling
,
H.
, and
Jacobs
,
D. W.
,
2007
, “
Shape Classification Using the Inner-Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
2
), pp.
286
299
.
20.
Zhou
,
Y.
, and
Tuzel
,
O.
,
2018
, “
Voxelnet: End-to-End Learning for Point Cloud Based 3D Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
4490
4499
.
21.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
3D Convolutional Neural Networks for Landing Zone Detection From Lidar
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
3471
3478
.
22.
Wang
,
C.
,
Cheng
,
M.
,
Sohel
,
F.
,
Bennamoun
,
M.
, and
Li
,
J.
,
2019
, “
Normalnet: A Voxel-Based CNN for 3D Object Classification and Retrieval
,”
Neurocomputing
,
323
, pp.
139
147
.
23.
Ghadai
,
S.
,
Lee
,
X.
,
Balu
,
A.
,
Sarkar
,
S.
, and
Krishnamurthy
,
A.
,
2018
, “
Multi-Resolution 3D Convolutional Neural Networks for Object Recognition
,” arXiv:1805, 12254.
24.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
1912
1920
.
25.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E.
,
2015
, “
Multi-View Convolutional Neural Networks for 3D Shape Recognition
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Washington, DC
,
Oct. 17–21
.
26.
Leng
,
B.
,
Guo
,
S.
,
Zhang
,
X.
, and
Xiong
,
Z.
,
2015
, “
3D Object Retrieval With Stacked Local Convolutional Autoencoder
,”
Signal Process.
,
112
, pp.
119
128
.
27.
Bai
,
S.
,
Bai
,
X.
,
Zhou
,
Z.
,
Zhang
,
Z.
, and
Jan Latecki
,
L.
,
2016
, “
Gift: A Real-Time and Scalable 3D Shape Search Engine
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
5023
5032
.
28.
Kalogerakis
,
E.
,
Averkiou
,
M.
,
Maji
,
S.
, and
Chaudhuri
,
S.
,
2017
, “
3D Shape Segmentation With Projective Convolutional Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
3779
3788
.
29.
Cao
,
Z.
,
Huang
,
Q.
, and
Karthik
,
R.
,
2017
, “
3D Object Classification Via Spherical Projections
,”
2017 International Conference on 3D Vision (3DV)
,
Qingdao, China
,
Oct. 10–12
, IEEE, pp.
566
574
.
30.
Zhang
,
L.
,
Sun
,
J.
, and
Zheng
,
Q.
,
2018
, “
3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network
,”
Sensors
,
18
(
11
), p.
3681
.
31.
Wang
,
P.-S.
,
Liu
,
Y.
,
Guo
,
Y.-X.
,
Sun
,
C.-Y.
, and
Tong
,
X.
,
2017
, “
O-CNN: Octree-Based Convolutional Neural Networks for 3D Shape Analysis
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
11
.
32.
Wang
,
P.-S.
,
Sun
,
C.-Y.
,
Liu
,
Y.
, and
Tong
,
X.
,
2018
, “
Adaptive O-CNN: a Patch-Based Deep Representation of 3D Shapes
,”
ACM Trans. Graph.
,
37
(
6
), pp.
1
11
.
33.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
652
660
.
34.
Qi
,
C. R.
,
Yi
,
L.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
5099
5108
.
35.
Klokov
,
R.
, and
Lempitsky
,
V.
,
2017
, “
Escape From Cells: Deep KD-Networks for the Recognition of 3D Point Cloud Models
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
863
872
.
36.
Wang
,
Y.
,
Sun
,
Y.
,
Liu
,
Z.
,
Sarma
,
S. E.
,
Bronstein
,
M. M.
, and
Solomon
,
J. M.
,
2019
, “
Dynamic Graph CNN for Learning on Point Clouds
,”
ACM Trans. Graph.
,
38
(
5
), pp.
1
12
.
37.
Wang
,
C.
,
Samari
,
B.
, and
Siddiqi
,
K.
,
2018
, “
Local Spectral Graph Convolution for Point Set Feature Learning
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
52
66
.
38.
Zhang
,
Z.
,
Hua
,
B.-S.
, and
Yeung
,
S.-K.
,
2019
, “
Shellnet: Efficient Point Cloud Convolutional Neural Networks Using Concentric Shells Statistics
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–28
, pp.
1607
1616
.
39.
Han
,
W.
,
Wen
,
C.
,
Wang
,
C.
,
Li
,
X.
, and
Li
,
Q.
,
2019
, “
Point2node: Correlation Learning of Dynamic-Node for Point Cloud Feature Modeling
,” arXiv:1912.10775.
40.
Van der Walt
,
S.
,
Schönberger
,
J. L.
,
Nunez-Iglesias
,
J.
,
Boulogne
,
F.
,
Warner
,
J. D.
,
Yager
,
N.
,
Gouillart
,
E.
, and
Yu
,
T.
,
2014
, “
SCIKIT-Image: Image Processing in Python
,”
PeerJ
,
2
(
2
), p.
e453
.
41.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,” arXiv:1502.03167.
42.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: a Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1929
1958
.
43.
Narayan
,
S.
,
1997
, “
The Generalized Sigmoid Activation Function: Competitive Supervised Learning
,”
Inf. Sci.
,
99
(
1–2
), pp.
69
82
.
You do not currently have access to this content.