Abstract

Undetected fatigue and overload damages at the key locations of the crane boom are among the biggest threats in construction, leading to structural failure. Thus, the structural health of the crane boom should be monitored in real time to ensure that it works under the designed load capacity. In this study, we developed a lightweight digital twin by the multifidelity surrogate (MFS) model to improve the real-time monitoring and prediction accuracy of the structural safety of a crane boom. Digital twin technology, which can establish real-time mapping between the physical space and the digital space, has a promising potential for online monitoring and analysis of structures, equipment, and even human bodies. By combining the MFS model and sensor data, the lightweight digital twin can dynamically mirror the crane boom postures and predict its structural performance in real time. In this study, the structural analysis of the crane boom is limited to the linear elastic stage of materials. Numerical experiments showed that the accuracy of the lightweight digital twin was enhanced compared with that established by the single-fidelity surrogate model, and the computational cost of the lightweight digital twin was decreased with respect to the digital twin built by the numerical method. Meanwhile, the uncertainty from the physical space was analyzed to enhance the reliability of the lightweight digital twin. Thus, the lightweight digital twin developed in our work can ensure accurate safety prediction and design optimization for crane booms.

References

1.
Voytenko
,
M.
,
2020
, “
New Heavy-Lift Floating Crane Collapsed in Rostock VIDEO
,” Fleetmon, https://www.fleetmon.com/maritime-news/2020/29565/new-heavy-lift-floating-crane-collapse/, Accessed May 31, 2021.
2.
Cranes
,
B.
Crane Accident
,” Pinterest, https://in.pinterest.com/bshcranes/crane-accident/, Accessed —Mar. 26, 2021.
3.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Pap.
,
1
, pp.
1
7
.
4.
Shafto
,
M.
,
Conroy
,
M.
,
Doyle
,
R.
,
Glaessgen
,
E.
,
Kemp
,
C.
,
LeMoigne
,
J.
, and
Wang
,
L.
,
2010
, “
DRAFT Modeling, Simulation, Information Technology & Processing Roadmap: Technology Area 11
,”
Nat. Aeronaut. Space Adm.
,
11
, pp.
1
38
.
5.
Tuegel
,
E. J.
,
2012
, “
The Airframe Digital Twin: Some Challenges to Realization
,”
53
rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Honolulu, HI, Apr. 23–26, pp.
1
8
.
6.
Rosen
,
R.
,
Von Wichert
,
G.
,
Lo
,
G.
, and
Bettenhausen
,
K. D.
,
2015
, “
About the Importance of Autonomy and Digital Twins for the Future of Manufacturing
,”
IFAC-PapersOnLine
,
28
(
3
), pp.
567
572
.
7.
Stefan
,
B.
, and
Rosen
,
R.
,
2016
,
Digital Twin—The Simulation Aspect
,
Springer-Verlag
,
Berlin
.
8.
Schluse
,
M.
, and
Rossmann
,
J.
,
2016
, “
From Simulation to Experimentable Digital Twins: Simulation-Based Development and Operation of Complex Technical Systems
,”
2016 IEEE International Symposium on Systems Engineering (ISSE)
,
Orlando, FL
,
Apr. 18–21
, pp.
1
6
.
9.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.
10.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
11.
Seshadri
,
B. R.
, and
Krishnamurthy
,
T.
,
2017
, “
Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept
,”
25th AIAA/AHS Adaptive Structures Conference 2017
,
Gravaine,
Jan. 9–13
, pp.
1
13
.
12.
Zhidchenko
,
V.
,
Malysheva
,
I.
,
Handroos
,
H.
, and
Kovartsev
,
A.
,
2018
, “
Faster Than Real-Time Simulation of Mobile Crane Dynamics Using Digital TwinConcept
,”
J. Phys. Conf. Ser.
,
1096
(
1
), pp.
1
11
.
13.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
14.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Robot. Comput. Integr. Manuf.
,
65
, pp.
1
16
.
15.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin—Proof of Concept
,”
Manuf. Lett.
,
15
, pp.
64
66
.
16.
Guivarch
,
D.
,
Mermoz
,
E.
,
Marino
,
Y.
, and
Sartor
,
M.
,
2019
, “
Creation of Helicopter Dynamic Systems Digital Twin Using Multibody Simulations
,”
CIRP Ann.
,
68
(
1
), pp.
133
136
.
17.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2020
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
,
23
(
2
), pp.
177
188
.
18.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Fail. Anal.
,
112
, pp.
1
10
.
19.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
20.
von Rueden
,
L.
,
Mayer
,
S.
,
Sifa
,
R.
,
Bauckhage
,
C.
, and
Garcke
,
J.
,
2020
, “
Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions
,”
International Symposium on Intelligent Data Analysis
,
Konstanz, Germany
,
Apr. 27–29
, pp.
548
560
.
21.
Magargle
,
R.
,
Johnson
,
L.
,
Mandloi
,
P.
,
Davoudabadi
,
P.
,
Kesarkar
,
O.
,
Krishnaswamy
,
S.
,
Batteh
,
J.
, and
Pitchaikani
,
A.
,
2017
, “
A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an Automotive Braking System
,”
Proceedings of the 12th International Modelica Conference
,
Prague, Czech Republic
,
May 15–17
, pp.
35
46
.
22.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
23.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
.
24.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
, and
Willcox
,
K. E.
,
2020
, “
Toward Predictive Digital Twins via Component-Based Reduced-Order Models and Interpretable Machine Learning
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, pp.
1
19
.
25.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2020
, “
Data-Driven Physics-Based Digital Twins via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
, pp.
1
18
.
26.
Kapteyn
,
M. G.
,
Pretorius
,
J. V. R.
, and
Willcox
,
K. E.
,
2021
, “
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
337
347
.
27.
Lai
,
X.
,
Wang
,
S.
,
Guo
,
Z.
,
Zhang
,
C.
,
Sun
,
W.
, and
Song
,
X.
,
2021
, “
Designing a Shape–Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071703
.
28.
Shi
,
M.
,
Lv
,
L.
,
Sun
,
W.
, and
Song
,
X.
,
2020
, “
A Multi-Fidelity Surrogate Model Based on Support Vector Regression
,”
Struct. Multidiscip. Optim.
,
61
(
6
), pp.
2363
2375
.
29.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1029
1050
.
30.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
31.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
965
981
.
32.
Wang
,
S.
,
Liu
,
Y.
,
Zhou
,
Q.
,
Yuan
,
Y.
,
Lv
,
L.
, and
Song
,
X.
,
2021
, “
A Multi-Fidelity Surrogate Model Based on Moving Least Squares: Fusing Different-Fidelity Data for Engineering Design
,”
Struct. Multidiscip. Optim.
32, pp.
3637
3652
.
33.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.
You do not currently have access to this content.