Technology evolution prediction is critical for designers, business managers, and entrepreneurs to make important decisions during product development planning such as R&D investment and outsourcing. In practice, designers want to supplement point forecasts with prediction intervals to assess future uncertainty and make contingency plans accordingly. However, prediction intervals generation for technology evolution has received scant attention in the literature. In this paper, we develop a generic method that uses bootstrapping to generate prediction intervals for technology evolution. The method we develop can be applied to any model that describes technology performance incremental change. We consider parameter uncertainty and data uncertainty and establish their empirical probability distributions. We determine an appropriate confidence level to generate prediction intervals through a holdout sample analysis rather than specify that the confidence level equals 0.05 as is typically done in the literature. In addition, our method provides the probability distribution of each parameter in a prediction model. The probability distribution is valuable when parameter values are associated with the impact factors of technology evolution. We validate our method to generate prediction intervals through two case studies of central processing units (CPU) and passenger airplanes. These case studies show that the prediction intervals generated by our method cover every actual data point in the holdout sample tests. We outline four steps to generate prediction intervals for technology evolution prediction in practice.

References

1.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Betz
,
F.
,
1993
,
Strategic Technology Management
,
McGraw-Hill
,
New York
.
3.
Chatfield
,
C.
,
1993
, “
Calculating Interval Forecasts
,”
J. Bus. Econ. Stat.
,
11
(
2
), pp.
121
135
.
4.
Schaller
,
R. R.
,
1997
, “
Moore's Law: Past, Present and Future
,”
IEEE Spectrum
,
34
(
6
), pp.
52
59
.
5.
Modis
,
T.
,
2014
,
An S-Shaped Adventure: Predictions—20 Years Later
,
Growth Dynamics
,
Lugano, Switzerland
.
6.
Zhang
,
G.
,
McAdams
,
D. A.
,
Shankar
,
V.
, and
Mohammadi Darani
,
M.
,
2018
, “
Technology Evolution Prediction Using Lotka–Volterra Equations
,”
ASME J. Mech. Des.
,
140
(
6
), p.
061101
.
7.
Efron
,
B.
,
1979
, “
Bootstrap Methods: Another Look at the Jackknife
,”
Ann. Stat.
,
7
(
1
), pp.
1
26
.
8.
Mooney
,
C.
, and
Duval
,
R.
,
1993
,
Bootstrapping: A Nonparametric Approach to Statistical Inference
,
SAGE Publications
,
Newbury Park, CA
.
9.
Efron
,
B.
, and
Tibshirani
,
R.
,
1986
, “
Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy
,”
Stat. Sci.
,
1
(
1
), pp.
54
75
.
10.
Chatfield
,
C.
,
1996
, “
Model Uncertainty and Forecast Accuracy
,”
J. Forecasting
,
15
(
7
), pp.
495
508
.
11.
Chatfield
,
C.
,
1988
, “
What is the ‘Best’ Method of Forecasting?
,”
J. Appl. Stat.
,
15
(
1
), pp.
19
38
.
12.
Hyndman
,
R. J.
, and
Athanasopoulos
,
G.
,
2014
,
Forecasting: Principles and Practice
,
OTexts
,
Columbia, SC
.
13.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2006
,
Introduction to Linear Regression Analysis
,
Wiley-Interscience
,
Hoboken, NJ
.
14.
Shumway
,
R. H.
, and
Stoffer
,
D. S.
,
2011
,
Time Series Analysis and Its Applications
,
Springer
,
New York
.
15.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
16.
Chatfield
,
C.
,
2004
,
The Analysis of Time Series
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
17.
de Gooijer
,
J. G.
,
Abraham
,
B.
,
Gould
,
A.
, and
Robinson
,
L.
,
1985
, “
Methods for Determining the Order of an Autoregressive-Moving Average Process: A Survey
,”
Int. Stat. Rev./Revue Internationale de Statistique
,
53
(
3
), pp.
301
329
.
18.
Harvey
,
A. C.
,
1990
,
Forecasting, Structural Time Series Models and the Kalman Filter
,
Cambridge University Press
,
Cambridge, UK
.
19.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2009
,
Sensitivity Analysis
,
Wiley
,
New York
.
20.
Congdon
,
P.
,
2014
,
Applied Bayesian Modelling
,
Wiley
,
Chichester, UK
.
21.
Williams
,
W. H.
, and
Goodman
,
M. L.
,
1971
, “
A Simple Method for the Construction of Empirical Confidence Limits for Economic Forecasts
,”
J. Am. Stat. Assoc.
,
66
(
336
), pp.
752
754
.
22.
Makridakis
,
S.
,
Hibon
,
M.
,
Lusk
,
E.
, and
Belhadjali
,
M.
,
1987
, “Confidence Intervals: An Empirical Investigation of the Series in the M-Competition
,” Int. J. Forecasting
,
3
(
3–4
), pp.
489
508
.
23.
Thombs
,
L. A.
, and
Schucany
,
W. R.
,
1990
, “
Bootstrap Prediction Intervals for Autoregression
,”
J. Am. Stat. Assoc.
,
85
(
410
), pp.
486
492
.
24.
Ghysels
,
E.
, and
Jasiak
,
J.
,
1997
,
GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model
, CIRANO,
Montreal, QC
,
Canada
.
25.
Anderson
,
P.
, and
Tushman
,
M. L.
,
1990
, “
Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change
,”
Adm. Sci. Q.
, (
4
), pp.
604
633
.
26.
Sahal
,
D.
,
1985
, “
Technological Guideposts and Innovation Avenues
,”
Res. Policy
,
14
(
2
), pp.
61
82
.
27.
Christensen
,
C.
,
2013
,
The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail
,
Harvard Business Review Press
,
Cambridge, MA
.
28.
Ghasemi
,
A.
, and
Zahediasl
,
S.
,
2012
, “
Normality Tests for Statistical Analysis: A Guide for Non-Statisticians
,”
Int. J. Endocrinol. Metabolism
,
10
(
2
), pp.
486
489
.
29.
Meade
,
N.
, and
Islam
,
T.
,
1998
, “
Technological Forecasting—Model Selection, Model Stability, and Combining Models
,”
Manage. Sci.
,
44
(
8
), pp.
1115
1130
.
30.
Farmer
,
J. D.
, and
Lafond
,
F.
,
2016
, “
How Predictable is Technological Progress?
,”
Res. Policy
,
45
(
3
), pp.
647
665
.
31.
Arendt
,
J. L.
,
McAdams
,
D. A.
, and
Malak
,
R. J.
,
2012
, “
Uncertain Technology Evolution and Decision Making in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100904
.
32.
Naim
,
A. M.
, and
Lewis
,
K.
,
2017
, “
Modeling the Dynamics of Innovation in Engineered Systems
,”
ASME
Paper No. DETC2017-68180.
33.
Nagy
,
B.
,
Farmer
,
J. D.
,
Bui
,
Q. M.
, and
Trancik
,
J. E.
,
2013
, “
Statistical Basis for Predicting Technological Progress
,”
PLoS ONE
,
8
(
2
), p.
e52669
.
34.
Young
,
P.
,
1993
, “
Technological Growth Curves: A Competition of Forecasting Models
,”
Technol. Forecasting Soc. Change
,
44
(
4
), pp.
375
389
.
35.
Draper
,
D.
,
1995
, “
Assessment and Propagation of Model Uncertainty
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
57
(
1
), pp.
45
97
.https://www.jstor.org/stable/2346087
36.
Freedman
,
D. A.
,
1981
, “
Bootstrapping Regression Models
,”
Ann. Stat.
,
9
(
6
), pp.
1218
1228
.
37.
Meade
,
N.
, and
Islam
,
T.
,
1995
, “
Prediction Intervals for Growth Curve Forecasts
,”
J. Forecasting
,
14
(
5
), pp.
413
430
.
38.
Rohatgi
,
V. K.
,
1984
,
Statistical Inference
,
Wiley
,
New York
.
39.
Zhang
,
G.
,
McAdams
,
D. A.
,
Shankar
,
V.
, and
Darani
,
M. M.
,
2017
, “
Modeling the Evolution of System Technology Performance When Component and System Technology Performances Interact: Commensalism and Amensalism
,”
Technol. Forecasting Soc. Change
,
125
, pp.
116
124
.
40.
Iatrou
,
K.
,
2014
,
100 Years of Commercial Aviation
,
HERMES Air Transport Club
,
Montreal, QC, Canada
.
41.
Daly
,
M.
, and
Gunston
,
B.
,
2008
,
Jane's Aero-Engines
,
Jane's Information Group Limited
,
Surry, UK
.
42.
Wilkinson
,
P. H.
,
1970
,
Aircraft Engines of the World 1970
,
Paul H. Wilkinson
,
Washington, DC
.
43.
Moré
,
J.
, and
Sorensen
,
D.
,
1983
, “
Computing a Trust Region Step
,”
SIAM J. Sci. Stat. Comput.
,
4
(
3
), pp.
553
572
.
44.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
45.
Lapidus
,
L.
, and
Seinfeld
,
J. H.
,
1971
,
Numerical Solution of Ordinary Differential Equations
,
Academic Press
,
New York
.
You do not currently have access to this content.