Traditionally, origami-based structures are designed on the premise of “rigid folding,” However, every act of folding and unfolding is accompanied by elastic deformations in real structures. This study focuses on these elastic deformations in order to expand origami into a new method of designing morphing structures. The authors start by proposing a simple model for evaluating elastic deformation in nonrigid origami structures. Next, these methods are applied to deployable plate models. Initial strain is introduced into the elastic parts as actuators for deployment. Finally, by using the finite element method (FEM), it is confirmed that the proposed system can accomplish the complete deployment in 3 × 3 Miura-or model.
Issue Section:
Design Automation
References
1.
Miura
, K.
, 2009
, “Triangles and Quadrangles in Space
,” Proceedings of the Symposium of the International Association for Shell and Spatial Structures
, A.
Domingo
, and C.
Carlos Lazaro
, ed., Editorial de la Universidad Politecnica de Valencia, Valencia, Spain
, pp. 27
–38
.2.
Hawkes
, E.
, An
, B.
, Benbernou
, N. M.
, Tanaka
, H.
, Kim
, S.
, Demaine
, E. D.
, Rus
, D.
, and Wood
, R. J.
, 2010
, “Programmable Matter by Folding
,” PNAS
, 107
(28
), pp. 12441
–12445
.10.1073/pnas.09140691073.
Liu
, Y.
, Boyles
, J. K.
, Genzer
, J.
, and Dickey
, M. D.
, 2012
,“Self-Folding of Polymer Sheets Using Local Light Absorption
,” Soft Matter
, 8
(6
), pp. 1764
–1769
.10.1039/c1sm06564e4.
Kobayashi
, H.
, Kresling
, B.
, and Vincent
, J. F. V.
, 1998
, “Geometry and Mechanics Simulations of Growth Patterns and Caleopteta
,” Biomimetics
, 3
, pp. 105
–122
.5.
Kobayashi
, H.
, Daimaruya
, H.
, and Vincent
, J. F. V.
, 2000
, “Folding/Unfolding Manner of Tree Leaves as Deployable Structures
,” Solid Mech. Appl.
, 80
, pp. 211
–220
.6.
Kobayashi
, H.
, Daimaruya
, H.
, and Fujita
, H.
, 2003
, “Unfolding of Morning Glory Flower as Deployable Structures
,” Solid Mech. Appl.
, 106
, pp. 207
–216
.7.
Tachi
, T.
, 2009
, “Simulation of Rigid Origami
,” Proceedings of the 4OSME
, pp. 175
–187
. Available at: http://www.tsg.ne.jp/TT/software/index.html#rigid_origami8.
Wu
, W.
, and You
, Z.
, 2011
, “A Solution for Folding Rigid Tall Shopping Bags
,” Proc. R. Soc. A
, 467
(2133
), pp. 2561
–2574
.10.1098/rspa.2011.01209.
Guest
, S. D.
, and Pellegrino
, S.
, 1994
, “The Folding of Triangulated Cylinders Part I: Geometric Considerations
,” ASME J. Appl. Mech.
, 61
(4
), pp. 773
–777
.10.1115/1.290155310.
Guest
, S. D.
, and Pellegrino
, S.
, 1994
, “The Folding of Triangulated Cylinders, Part II: The Folding Process
,” ASME J. Appl. Mech.
, 61
(4
), pp. 778
–783
.10.1115/1.290155411.
Guest
, S. D.
, and Pellegrino
, S.
, 1996
, “The Folding of Triangulated Cylinders, Part III: Experiments
,” ASME J. Appl. Mech.
, 63
(1
), pp. 77
–83
.10.1115/1.278721212.
Nojima
, T.
, 2002
, “Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami
,” JSME Int. C
, 45
(1
), p. 364
.10.1299/jsmec.45.36413.
Nojima
, T.
, 2003
, “Modeling of Compact Folding/Wrapping of Flat Circular Membranes
,” JSME Int. C
, 46
(4
), p. 154
.14.
Tachi
, T.
, 2009
, “Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,” J. Int. Assoc. Shell Spat. Struct.
, 50
(3
), pp. 173
–179
.15.
Demaine
, E. D.
, Demaine
, M. L.
, Hart
, V.
, Price
, G. N.
, and Tachi
, T.
, 2009
, “(Non)Existence of Pleated Folds: How Paper Folds Between Creases
,” Graphs Combin.
, 27
(3
), pp. 377
–397
.10.1007/s00373-011-1025-2Copyright © 2015 by ASME
You do not currently have access to this content.