In this paper, a method to determine the internal and external boundaries of planar workspaces, represented with an ordered set of points, is presented. The sequence of points are grouped and can be interpreted to form a sequence of curves. Three successive curves are used for determining the instantaneous center of rotation for the second one of them. The two extremal points on the curve with respect to the instantaneous center are recognized as singular points. The chronological ordering of these singular points is used to generate the two envelope curves, which are potentially intersecting. Methods have been presented in the paper for the determination of the workspace boundary from the envelope curves. Strategies to deal with the manipulators with joint limits and various degenerate situations have also been discussed. The computational steps being completely geometric, the method does not require the knowledge about the manipulator’s kinematics. Hence, it can be used for the workspace of arbitrary planar manipulators. A number of illustrative examples demonstrate the efficacy of the proposed method.

1.
Roth
,
B.
, 1976, “
Performance Evaluation of Manipulators From a Kinematic Viewpoint
,” NBS Special Publication No. 459 (Oct. 1976), Performance Evaluation of Programmable Robots and Manipulators, U.S. Government Printing Office, WA, pp.
39
61
.
2.
Sen
,
D.
, and
Mruthyunjaya
,
T. S.
, 1999, “
Synthesis of Workspaces of Planar Manipulators With Arbitrary Topology Using Shape Representation and Simulated Annealing
,”
Mech. Mach. Theory
0094-114X,
34
(
3
), pp.
391
420
.
3.
Cheng
,
H. H.
, and
Thompson
,
S.
, 1999, “
Singularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
200
205
.
4.
Lai
,
Z. C.
, and
Yang
,
D. C. H.
, 1986, “
A New Method for the Singularity Analysis of Simple Link Manipulators
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
66
74
.
5.
Lipkin
,
H.
, and
Pohl
,
E.
, 1991, “
Enumeration of Singular Configurations for Robotics Manipulators
,”
ASME J. Mech. Des.
1050-0472,
113
, pp.
272
279
.
6.
Long
,
G. L.
, 1997, “
Use of the Cylindroid for the Singularity Analysis of Rank 3 Robot Manipulators
,”
Mech. Mach. Theory
0094-114X,
32
(
3
), pp.
391
404
.
7.
Park
,
F. C.
, and
Kim
,
J. W.
, 1999, “
Singularity Analysis of Closed Kinematic Chains
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
32
38
.
8.
Wang
,
S. L.
, and
Waldron
,
K. J.
, 1987, “
A Study of the Singular Configurations of Serial Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
14
20
.
9.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1995, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
566
572
.
10.
Kumar
,
A.
, and
Waldron
,
K. J.
, 1981, “
The Workspaces of a Mechanical Manipulator
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
665
672
.
11.
Mruthyunjaya
,
T. S.
,
Gobinath
,
T.
, and
Balakumar
,
P.
, 1986, “
Extreme Reach Analysis of Manipulators With Revolute or Prismatic Joints
,”
ASME Design Engineering Technical Conference
, Columbus, OH, Sept., Paper No. 86-DET-191.
12.
Shimano
,
B.
, and
Roth
,
B.
, 1977, “
Ranges of Motion of Manipulators
,”
Proceedings of the Second International CISM-IFToMM Symposium
, Warsaw, Sept. 1976, PWN-Polish Science, Warszawa, pp.
18
26
.
13.
Sugimoto
,
K.
, and
Duffy
,
J.
, 1981, “
Determination of Extreme Distances of a Robot Hand. Part 1: A General Theory
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
631
636
.
14.
Kohli
,
D.
, and
Spanos
,
J.
, 1985, “
Workspace Analysis of Mechanical Manipulators Using Polynomial Discriminants
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
209
215
.
15.
Kohli
,
D.
, and
Hsu
,
M. S.
, 1987, “
The Jocobian Analysis of Workspaces of Mechanical Manipulators
,”
Mech. Mach. Theory
0094-114X,
22
(
3
), pp.
265
275
.
16.
Jo
,
D. Y.
, and
Haug
,
E. J.
, 1989, “
Workspace Analysis of Multibody Mechanical Systems Using Continuation Methods
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
581
589
.
17.
Abdel-Malek
,
K.
,
Adkins
,
F.
,
Yeh
,
H. J.
, and
Haug
,
E. J.
, 1997, “
On the Determination of Boundaries to Manipulator Workspaces
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
13
(
1
), pp.
63
72
.
18.
Abdel-Malek
,
K.
,
Yeh
,
H. J.
, and
Othman
,
S.
, 2000, “
Interior and Exterior Boundaries to the Workspaces of Mechanical Manipulators
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
16
(
5
), pp.
365
776
.
19.
Ottaviano
,
E.
,
Husty
,
M.
, and
Ceccarelli
,
M.
, 2006, “
Identification of the Workspace Boundary of a General 3-R Manipulator
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
236
242
.
20.
Agrawal
,
S. K.
, and
Garimella
,
R.
, 1994, “
Workspace Boundaries of Free-Floating Open and Closed Chain Planar Manipulators
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
105
110
.
21.
Bajpai
,
A.
, and
Roth
,
B.
, 1986, “
Workspace and Mobility of a Closed-Loop Manipulator
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
131
142
.
22.
Cerventes-Sanchez
,
J. J.
,
Harnandez-Rodriguez
,
J. C.
, and
Rendon-Sanchez
,
J. G.
, 2000, “
On the Workspace, Assembly Configurations and Singularity Curves of the RRRRR-Type Planar Manipulator
,”
Mech. Mach. Theory
0094-114X,
35
(
8
), pp.
1117
1139
.
23.
Fallahi
,
B.
,
Lai
,
H. Y.
,
Naghiri
,
R.
, and
Wang
,
Y.
, 1994, “
A Study of the Workspace of Five-Bar Closed Loop Manipulator
,”
Mech. Mach. Theory
0094-114X,
29
(
5
), pp.
759
765
.
24.
Gosselin
,
C.
, 1990, “
Determination of the Workspace of 6-D.O.F. Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
112
(
3
), pp.
31
336
.
25.
Luh
,
C.
,
Adkins
,
F. A.
Haug
,
E. J.
, and
Qiu
,
C. C.
, 1996, “
Working Capability Analysis of Stewart Platforms
,”
ASME J. Mech. Des.
1050-0472,
118
(
2
), pp.
220
227
.
26.
Merlet
,
J. P.
,
Gosselin
,
C. M.
, and
Mouly
,
N.
, 1998, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
1
), pp.
7
20
.
27.
Pennock
,
G. R.
, and
Kassner
,
D. J.
, 1993, “
The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipulator
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
269
276
.
28.
Rastegar
,
J.
, and
Deravi
,
P.
, 1987, “
Methods to Determine Workspace, Its Subspaces With Different Numbers of Configurations and All the Possible Configurations of a Manipulator
,”
Mech. Mach. Theory
0094-114X,
22
(
4
), pp.
343
350
.
29.
Ricard
,
R.
, and
Gosselin
,
C. M.
, 1994, “
On the Determination of the Workspace of Complex Planar Robotic Manipulators
,”
Proceedings of the 1994 ASME Biennial Technical Conference on Robotics, Kinematics, Dynamics and Controls
, Vol.
72
, pp.
133
140
.
30.
Ricard
,
R.
, and
Gosselin
,
C. M.
, 1998, “
On the Determination of the Workspace of Complex Planar Robotics Manipulators
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
269
278
.
31.
Ting
,
K.-L.
, 1992, “
Gross Motion and Classification of Manipulators With Closed-Loop, Four-Bar Chains
,”
Int. J. Robot. Res.
0278-3649,
11
(
3
), pp.
238
247
.
32.
Lee
,
T. W.
, and
Yang
,
D. C. H.
, 1983, “
On the Evaluation of Manipulator Workspaces
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
70
77
.
33.
Cwiakala
,
M.
, and
Lee
,
T. W.
, 1985, “
Generation and Evaluaton of a Manipulator Workspace Based on Optimum Path Search
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
245
255
.
34.
Alciatore
,
D. G.
, and
Ng
,
C. D.
, 1974, “
Determining Manipulator Workspace Boundaries Using the Monte Carlo Method and Least Squares Segmentation
,”
Proceedings of the 1994 ASME Biennial Technical Conference on Robotics, Kinematics, Dynamics and Controls
, Vol.
72
, pp.
141
146
.
35.
Rastegar
,
J.
, and
Perel
,
D.
, 1990, “
Generation of Manipulator Workspace Boundary Geometry Using Monte Carlo Method and Interactive Computer Graphics
,”
ASME J. Mech. Des.
1050-0472,
112
(
3
), pp.
452
454
.
36.
Sen
,
D.
, and
Mruthyunjaya
,
T. S.
, 1998, “
A Centro-Based Characterization of Singularities in the Workspace of Planar Closed-Loop Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
8
), pp.
1091
1104
.
37.
Haug
,
E. J.
,
Luh
,
C.-M.
,
Adkins
,
F. A.
, and
Wang
,
J.-Y.
, 1996, “
Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
228
234
.
38.
Sen
,
D.
, and
Mruthyunjaya
,
T. S.
, 1999, “
A Computational Geometry Approach for Determination of Boundary of Planar Manipulators With Arbitrary Topology
,”
Mech. Mach. Theory
0094-114X,
34
(
1
), pp.
149
169
.
39.
Haug
,
E. J.
,
Adkins
,
F. A.
, and
Luh
,
C. M.
, 1998, “
Operational Envelopes for Working Bodies of Mechanisms and Manipulators
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
84
91
.
40.
Ling
,
Z. K.
, and
Chase
,
T. R.
, 1996, “
Generating the Swept Area of a Body Undergoing Planar Motion
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
186
192
.
41.
Sen
,
D.
,
Chowdhury
,
S.
, and
Pandey
,
S.
, 2004, “
Geometric Design of Interference-Free Planar Linkages
,”
Mech. Mach. Theory
0094-114X,
39
(
7
), pp.
737
759
.
42.
Mortenson
,
M. E.
, 1985,
Geometric Modeling
,
Wiley
, pp.
403
413
.
You do not currently have access to this content.