This paper investigates the equivalent mechanism structure of origami cartons and for the first time proposes a quantitative model of cartons and the interactive configuration space for folding origami cartons. With an analysis of the equivalent mechanism, gusset vertexes of cartons are investigated based on their equivalent spherical linkages and identified as guiding linkages that determine folding. Having established a kinematics model, a configuration control vector is characterized to control carton manipulation. The information of this configuration control vector is passed to the tip of a robotic finger, and the finger configuration space is hence identified. The paper further introduces configuration transformation and creates a carton interactive configuration space, leading to generating trajectories of all four configuration control vectors and, subsequently, to finger operation trajectories. This results in making use of four robotic fingers for folding origami cartons. The interactive technique is further used for final tucking carton flaps. A novel rig with robotic fingers is then presented to demonstrate the principle and concept.

1.
Shpitalni
,
M.
, and
Saddan
,
D.
, 1994, “
Automatic Determination of Bending Sequence in Sheet Metal Products
,”
CIRP Ann.
0007-8506,
43
(
1
), pp.
23
26
.
2.
Radin
,
B.
,
Shpitalni
,
M.
, and
Hartman
,
I.
, 1997, “
Two-Stage Algorithm for Determination of the Bending Sequence in Sheet Metal Products
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
259
266
.
3.
Inui
,
M.
,
Kinosada
,
A.
,
Suzuki
,
H.
,
Kimura
,
F.
, and
Sata
,
T.
, 1987, “
Automatic Process Planning for Sheet Metal Parts With Bending Simulation
,”
ASME Winter Annual Meeting, Symposium on Intelligent and Integrated Manufacturing Analysis and Synthesis
, pp.
245
258
.
4.
Gupta
,
S. K.
,
Bourne
,
D. A.
,
Kim
,
K. H.
, and
Krishnan
,
S. S.
, 1998, “
Automated Process Planning for Sheet Metal Bending Operations
,”
J. Manuf. Syst.
0278-6125,
17
(
5
), pp.
338
360
.
5.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1997, “
Theory on Kinematics Synthesis and Motion Analysis of Cartons
,” Unilever Research, Science and Technology Report No. PS 970184.
6.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Kinematic and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
C10
), pp.
959
970
.
7.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1998, “
Mobility in Metamorphic Mechanism of Foldable/Erectable Kinds
,”
25th ASME Biennial Mechanisms and Robotics Conference
,
Atlanta, GA
, Sept.
8.
Agrawal
,
S. V.
, and
Erdman
,
A. G.
, 2005, “
Biomedical Assist Devices and New Biomimetic Machines—A Short Perspective
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
799
801
.
9.
Rodrigues Leal
,
E.
, and
Dai
,
J. S.
, 2007, “
From Origami to a New Class of Centralized Parallel Mechanisms
,”
ASME 31st Mechanisms and Robotics Conference
,
Las Vegas
, Sept.
10.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2005, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
837
840
.
11.
Demaine
,
E. D.
, 2001, “
Folding and Unfolding Linkages, Paper, and Polyhedra
,”
Discrete Comput. Geom.
0179-5376,
2098
, pp.
113
124
.
12.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Mitchell
,
J. S. B.
, 1999, “
Folding Flat Silhouettes and Wrapping Polyhedral Packages: New Results in Computational Origami
,”
Proceedings of the 15th Annual ACM Symposium Computational Geometry
,
Miami Beach, FL
, June.
13.
Demaine
,
E. D.
, and
Demaine
,
M. L.
, 2001, “
Recent Results in Computational Origami
,”
Proceedings of the third International Meeting of Origami Science, Math, and Education
.
14.
Song
,
G.
, and
Amato
,
N. M.
, 2001, “
A Motion Planning Approach to Folding: From Paper Craft to Protein Folding
,”
Proceedings of the IEEE International Conference Robotics Automation (ICRA)
, pp.
948
953
.
15.
Song
,
G.
, and
Amato
,
N. M.
, 2001, “
Using Motion Planning to Study Protein Folding Pathways
,”
Proceedings of the International Conference on Computational Molecular Biology (RECOMB)
, pp.
287
296
.
16.
Belcastro
,
S. M.
, and
Hull
,
T. C.
, 2001, “
A Mathematical Model for Non-Flat Origami
,”
Third International Meeting of Origami Science
; Origami,
Math and Education
,
3
, pp.
39
51
.
17.
Hull
,
T. C.
, 2002, “
The Combinatorics of Flat Folds: A Survey
,”
Third International Meeting of Origami Science
; Origami,
Math and Education
,
3
, pp.
29
38
.
18.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
10
), pp.
959
970
.
19.
Shimanuki
,
H.
,
Kato
,
J.
, and
Watanabe
,
T.
, 2004, “
A Recognition System for Folding Process of Origami Drill Books
,”
Graphics Recognition: Recent Advances and Perspectives
,
L.
LladÓs
and
Y.-B.
Kwon
, eds.,
Graphics Recognition, Lecture Notes in Computer Science
book series,
Springer
,
Berlin/Heidelberg
, Vol.
3088
, pp.
244
255
.
20.
Lu
,
L.
, and
Akella
,
S.
, 1999, “
Folding Cartons With Fixtures: A Motion Planning Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, May.
21.
Lu
,
L.
, and
Akella
,
S.
, 2000, “
Folding Cartons With Fixtures: A Motion Planning Approach
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
4
), pp.
346
356
.
22.
Dai
,
J. S.
, 1998 “
A Novel Multifingered Reconfigurable Packaging Device
,”
Design Note and Drawings, Internal Report
,
University of Sunderland
, June.
23.
Dai
,
J. S.
, and
Dubey
,
V. N.
, 1999,
Dexterous and Reconfigurable Assembly and Packaging Technology
, Project Report, King’s College London.
24.
Liu
,
H.
, and
Dai
,
J. S.
, 2002, “
Carton Manipulation Planning Using Configuration Transformation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
5
), pp.
543
555
.
25.
Balkcom
,
D. J.
, and
Mason
,
M. T.
, 2004, “
Introducing Robotic Origami Folding
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
.
26.
Balkcom
,
D. J.
,
Demaine
,
E. D.
, and
Demaine
,
M. L.
, 2004, “
Folding Paper Shopping Bags
,”
Proceedings of the 14th Annual Fall Workshop on Computational Geometry
,
Cambridge, MA
, Nov. 19–20.
27.
Lin
,
P. D.
, and
Hsieh
,
J.-F.
, 2007, “
A New Method to Analyze Spatial Binary Mechanisms With Spherical Pairs
,”
ASME J. Mech. Des.
1050-0472,
129
(
4
), pp.
455
458
.
28.
Baker
,
J. E.
, 2006, “
On Generating a Class of Foldable Six-Bar Spatial Linkages
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
374
383
.
29.
Kinzel
,
E. C.
,
Schmiedeler
,
J. E.
, and
Pennock
,
G. R.
, 2006, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1070
1079
.
30.
Foster
,
D. E.
, and
Cipra
,
R. J.
, 2006, “
Assembly Configurations of Planar Multi-Loop Mechanisms With Kinematic Limitations
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
747
754
.
31.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
220
229
.
32.
Hamza
,
K.
, and
Saitou
,
K.
, 2005, “
Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
485
492
.
You do not currently have access to this content.