In most of the existing work, model validation is viewed as verifying the model accuracy, measured by the agreement between computational and experimental results. Due to the lack of resource, accuracy can only be assessed at very limited test points. However, from the design perspective, a good model should be considered the one that can provide the discrimination (with good resolution) between competing design candidates under uncertainty. In this work, a design-driven validation approach is presented. By combining data from both physical experiments and the computer model, a Bayesian approach is employed to develop a prediction model as the replacement of the original computer model for the purpose of design. Based on the uncertainty quantification with the Bayesian prediction and, subsequently, that of a design objective, some decision validation metrics are further developed to assess the confidence of using the Bayesian prediction model in making a specific design choice. We demonstrate that the Bayesian approach provides a flexible framework for drawing inferences for predictions in the intended, but maybe untested, design domain. The applicability of the proposed decision validation metrics is examined for designs with either a discrete or continuous set of design alternatives. The approach is demonstrated through an illustrative example of a robust engine piston design.

1.
DoD, DoD Directive No. 5000.61, “
Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A)
,” Defense Modeling and Simulation Office (www.dmso.mil/docslibwww.dmso.mil/docslib).
2.
Ang
,
J. A.
,
Trucano
,
T. G.
, and
Luginbuhl
,
D. R.
, 1996, “
Confidence in ASCI Scientific Simulations
,”
Ninth Nuclear Explosives Code Developers’ Conference
,
San Diego, CA
, Oct. 22–25.
3.
Doebling
,
S. W.
,
Hemex
,
F. M.
,
Schultz
,
J. F.
, and
Girrens
,
S. P.
, 2002, “
Overview of Structural Dynamics Model Validation Activities at Los Alamos National Laboratory
,”
Proceedings of AIAA/ASME/ASCE/AHS/ASC 43rd Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
, Apr. 22–25, Paper No. AIAA 2002-1643.
4.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
, 2003, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,” Report No. SAND2003-3769.
5.
Cafeo
,
J. A.
, and
Thacker
,
B. H.
, 2004, “
Concepts and Terminology of Validation for Computational Solid Mechanics Models
,”
SAE 2004 World Congress and Exhibition
,
Detroit, MI
, March.
6.
Gu
,
L.
, and
Yang
,
R. J.
, 2003, “
Recent Applications on Reliability-Based Optimization of Automotive Structures
,” SAE Technical Paper No. 2003-01-0152.
7.
Marczyk
,
J.
,
Holzner
,
M.
,
Mader
,
H.
,
Clinkemaillie
,
J.
,
Meliciani
,
S.
,
Noack
,
M.
,
Seybold
,
J.
, and
Tanasescu
,
C.
, 1997, “
Stochastic Automotive Crash Simulation: A New Frontier in Virtual Prototyping
,”
Proceedings of the Pam 97 User Conference
,
Pragu, Czech Republic
, Oct. 16 and 17.
8.
Freese
,
F.
, 1960, “
Testing Accuracy
,”
Forest Science
,
6
(
2
), pp.
139
145
.
9.
Reynolds
,
M. R.
, Jr.
, 1984, “
Estimating the Error in Model Predictions
,”
Forest Science
,
30
(
2
), pp.
454
469
.
10.
Gregoire
,
T. G.
, and
Reynolds
,
M. R.
, 1988, “
Accuracy Testing and Estimation Alternatives
,”
Forest Science
,
34
(
2
), pp.
302
320
.
11.
Hills
,
G. R.
, and
Trucano
,
T. G.
, 1999, “
Statistical Validation of Engineering and Scientific Models: Background
,” Report No. SAND99-1256.
12.
Baud
,
S.
, and
Velex
,
P.
, 2002, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
334
346
.
13.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
, 2000, “
Validation Methodology in Computational Fluid Dynamics
,”
Fluids 2000
,
Denver, CO
, Paper No. AIAA 2000-2549.
14.
McAdams
,
D. A.
, and
Dym
,
C. L.
, 2004, “
Modeling and Information in the Design Process
,”
2004 ASM Design Technical Conferences
,
Salt Lake City, UT
, Sept. 28–Oct. 2, Paper No. DETC2004–57101.
15.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, 2004, “
On Characterizing and Assessing the Validity of Behavioral Models and Their Predictions
,”
2004 ASME Design Technical Conferences
,
Salt Lake City, UT
, Sept. 28–Oct. 2, Paper No. DETC2004-57452.
16.
Hazelrigg
,
G. A.
, 2003, “
Thoughts on Model Validation for Engineering Design
,”
ASME Design Technical Conference
,
Chicago, IL
, Sept. 2–6, Paper No. DETC2003/DTM-48632.
17.
Oberkampf
,
W.
, and
Barone
,
M.
, 2004, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
34th AIAA Fluid Dynamics Conference and Exhibit
,
Portland, OR
, June 28–1, Paper No. AIAA-2004-2626.
18.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
, 2001, “
Bayesian Calibration of Computer Experiments
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
1369-7412,
63
, pp.
425
464
.
19.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Higdon
,
D.
,
Kennedy
,
M. C.
,
Kottas
,
A.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
, 2002, “
A Framework for Validation of Computer Models
,”
Foundations for Verification and Validation in 21st Century Workshop
,
Johns Hopkins University
, Oct. 22–23.
20.
Buslik
,
A.
, 1994, “
A Bayesian Approach to Model Uncertainty
,”
Model Uncertainty: Its Characterization and Quantification
,
A.
Mosleh
,
N.
Siu
,
C.
Smidts
, and
C.
Lui
, eds.,
Center for Reliability Engineering, University of Maryland
,
College Park, MD
;
U.S. Nuclear Regulatory Commission, Report No. NUREG/CP-0138.
21.
Hanson
,
K. M.
, 1999, “
A Framework for Assessing Uncertainties in Simulation Predictions
,”
Physica D
0167-2789,
133
, pp.
179
188
.
22.
Easterling
,
R. G.
, and
Berger
,
J. O.
, 2002, “
Statistical Foundations for the Validation of Computer Models
,”
Presented at Computer Model Verification and Validation in the 21st Century Workshop
,
Johns Hopkins University
.
23.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
, 2004, “
Model Validation via Uncertainty Propagation and Data Transformations
,”
AIAA J.
0001-1452,
42
(
7
), pp.
1406
1415
.
24.
Buranathiti
,
T.
,
Cao
,
J.
,
Chen
,
W.
,
Baghdasaryan
,
L.
, and
Xia
,
Z. C.
, 2006, “
Approaches for Model Validation: Methodology and Illustration on a Sheet Metal Flanging Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
588
597
25.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2005, “
Validation of Reliability Computational Models using Bayes Networks
,”
Reliab. Eng. Syst. Saf.
0951-8320,
87
, pp.
223
232
.
26.
Chen
,
C. H.
,
Lin
,
J.
,
Yucesan
,
E.
, and
Chick
,
S. E.
, 2000, “
Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization
,”
Discrete Event Dyn. Syst.
0924-6703,
10
(
3
), pp.
251
270
.
27.
Mourelatos
,
Z. P.
, and
Liang
,
J.
, 2006, “
A Methodology for Trading-Off Performance and Robustness Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
856
863
.
28.
Apostolakis
,
G.
, 1994, “
A Commentary on Model Uncertainty
,”
Model Uncertainty: Its Characterization and Quantification
,
A.
Mosleh
,
N.
Siu
,
C.
Smidts
, and
C.
Lui
, eds.,
Center for Reliability Engineering, University of Maryland
,
College Park, MD
;
U.S. Nuclear Regulatory Commission, Report No. NUREG/CP-0138.
29.
Trucano
,
T. G.
, 1998, “
Prediction and Uncertainty in Computational Modeling of Complex Phenomena, A Whitepaper
,” Sandia Report No. SAND98-2776.
30.
Hazelrigg
,
G. A.
, 1999, “
On the Role and Use of Mathematical Models in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
121
(
3
), pp.
336
341
.
31.
Oberkampf
,
W. L.
,
Deland
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 1999, “
A New Methodology for the Estimation of Total Uncertainty in Computational Simulation
,”
AIAA System Dynamics, Material, Conference
, Paper No. AIAA-99-1612, pp. 3061–3083.
32.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2006, “
Inclusion of Model Errors in Reliability-Based Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
936
944
.
33.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K.
, 2006, “
Bayesian Validation of Computer Models
,” being revised for Technometrics.
34.
Qian
,
Z.
, and
Wu
,
C. F. J.
, 2005, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High Accuracy Experiments
,”
Twelfth Annual International Conference on Statistics, Combinatorics, Mathematics and Applications
,
Auburn University
,
Auburn, AL
, Dec. 2–4.
35.
Reese
,
C.
,
Wilson
,
A.
,
Hamada
,
M.
,
Martz
,
H.
, and
Ryan
,
K.
, 2004, “
Integrated Analysis of Computer and Physical Experiments
,”
Technometrics
0040-1706,
46
(
2
), pp.
153
164
.
36.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
909
918
.
37.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer-Verlag
New York
.
38.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
, 2000,
The Elements of Statistical Learning
,
Springer-Verlag
,
Berlin
.
39.
Geyer
,
C. J.
, 1992, “
Practical Markov Chain Monte Carlo
,”
Stat. Sci.
0883-4237,
7
(
4
), pp.
473
511
.
40.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2005, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
134
(
1
), pp.
268
287
.
41.
Hoffman
,
R. M.
,
Sudjianto
,
A.
,
Du
,
X.
, and
Stout
,
J.
, 2003, “
Robust Piston Design and Optimization Using Piston Secondary Motion Analysis
,”
SAE World Congress
,
Detroit, MI
, Mar. 3–6, Paper No. 2003-01-0148.
42.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
745
958
.
You do not currently have access to this content.