The process of calculating the dihedral angles of a peptide chain from atom coordinates in the chain is called residue level inverse kinematics. The uncertainties and experimental observation inaccuracies in the atoms’ coordinates handicap this otherwise simple and straightforward process. In this paper, we present and analyze three new efficient methodologies to find all the dihedral angles of a peptide chain for a given conformation. Comparison of these results with the dihedral angle values reported in the protein data bank (PDB) indicates significant improvements. While these improvements benefit most modeling methods in protein analysis, it is in particular, very significant in homology modeling where the dihedral angles are the generalized coordinates (structural variables). The first method presented here fits a best plane through five atoms of each peptide unit. The angle between the successive planes is defined as the dihedral angle. The second method is based on the zero-position analysis method. Successive links in this method rotate by the dihedral angles so as to minimize the structural error between respective atoms in the model conformation with given atoms’ coordinates. Dihedral angle final values correspond to the minimum structural error configuration. In this method, singular value decomposition technique is used to best fit the atoms in the two conformations. The third method is a variant of the second method. In this instead of rotating all the links successively only three links are matched each time to extract the dihedral angle of the middle link. By doing so, the error accumulation on the successive links is reduced. This paper focuses on the Euclidean norm as the measure of merit (structural error) to compare different methods with the PDB. This Euclidean norm is further, minimized by optimizing the geometrical features of the peptide plane.

1.
Kazerounian
,
K.
, 2004, “
From Mechanisms and Robotics to Protein Conformation and Drug Design
,”
ASME J. Mech. Des.
0161-8458
126
, pp.
1
6
.
2.
Ramachandran
,
G. N.
,
Ramakrishnan
,
C.
, and
Sasisekharan
,
V.
, 1963, “
Stereochemistry of Polypeptide Chain Configurations
,”
J. Mol. Biol.
0022-2836
7
, pp.
95
99
.
3.
Kazerounian
,
K.
, 2002, “
Is Design of New Drugs a Challenge for Kinematics?
Proceedings of the 8th International Conference on Advance Robot Kinematics (ARK)
, Caldes de Malavalla.
4.
Chirikjian
,
G. S.
,
Kazerounian
,
K.
, and
Mavroidis
,
C.
, 2005, “
Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
695
698
.
5.
Berman
,
H.
,
Westbrook
,
J.
,
Feng
,
Z.
,
Gilliland
,
G.
,
Bhat
,
T.
,
Weissig
,
H.
,
Shindyaloy
,
I.
, and
Bourne
,
P.
, 2000, “
The Protein Data Bank
,”
Nucleic Acids Res.
0305-1048,
28
, pp.
235
242
.
6.
Sheik
,
S. S.
,
Ananthalakshmi
,
P.
,
Ramya Bhargavi
,
G.
, and
S.
,
K.
, 2003, “
CADB: Conformation Angles DataBase of Proteins
,”
Nucleic Acids Res.
0305-1048,
31
, pp.
448
451
.
7.
Oleg
,
S.
,
Vaisman
,
I.
,
Shats
,
A.
, and
Sherman
,
S.
, 1998, “
Conformational Database for Amino Acid Residues in Protein Structures
,”
Proceedings 5th Electronic Computational Chemistry Conference (ECCC-5)
, web only event, November 2–30.
8.
Pauling
,
L.
and
Corey
,
R.
, 1970, “
Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains
,”
Eur. J. Biochem.
0014-2956,
15
, pp.
203
208
.
9.
IUPAC-IUB Commission on Biochemical Nomenclature (CBN)
, 1970, “
Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents. Recommendations
,”
Eur. J. Biochem.
0014-2956,
15
, pp.
203
208
.
10.
IUPAC-IUB Commission on Biochemical Nomenclature (CBN)
, 1970, “
Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents. Recommendations
,”
Biochem. J.
0264-6021,
120
, pp.
449
454
.
11.
Kazerounian
,
K.
,
Latif
,
K.
,
Rodriguez
,
K.
, and
Alvarado
,
C.
, 2005, “
Nano-Kinematics for Analysis of Protein Molecules
,”
J. Mech. Des.
1050-0472,
127
, pp.
699
711
.
12.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
Wiley
,
New York
.
13.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
J. Appl. Mech.
0021-8936,
77
, pp.
215
221
.
14.
Gupta
,
K. C.
, 1984, “
A Note on Position Analysis of Manipulators
,”
Mech. Mach. Theory
0094-114X,
19
, pp.
5
8
.
15.
Ramachandran
,
G. N.
, and
Sasisekharan
V.
, 1968 “
Conformation of Polypeptides and Proteins
,”
Adv. Protein Chem.
0065-3233,
23
, pp.
283
437
.
16.
Gupta
,
K. C.
, and
Chutakanonta
,
P.
, 1998, “
Accurate Determination of Object Position from Imprecise Data
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
559
564
.
17.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
, 1987, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
9
(
5
), pp.
698
700
.
18.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
, 2005 “
Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction
,”
J. Mech. Des.
1050-0472,
127
, pp.
712
717
.
19.
Botos
,
I.
,
Wu
,
Z.
,
Lu
,
W.
, and
Wlodawer
,
A.
, 2001, “
Crystal Structure of a Cyclic Form of Bovine Pancreatic Trypsin Inhibitor.
,”
Federation of European Biochemical Societies letter
,
509
, pp.
90
94
.
20.
Bertini
,
I.
,
Donaire
,
A.
,
Jimenez
,
B.
,
Luchinat
,
C.
,
Parigi
,
G.
,
Piccioli
,
M.
, and
Poggi
,
L.
, 2001, “
Paramagnetism-Based Versus Classical Constraints: An Analysis of the Solution Structure of Ca Ln Calbindin D9K
,”
J. Biomol. NMR
0925-2738,
21
, pp.
85
98
.
21.
Chen
,
C.
,
Brock
,
R.
,
Luh
,
F.
,
Chou
,
P. J.
,
Larrick
,
J. W.
,
Huang
,
R. F.
, and
Huang
,
T. H.
, 1995 “
The Solution Structure of the Active Domain of CAP18—A Lipopolysaccharide Binding Protein from Rabbit leukocytes
,”
Federation of European Biochemical Societies Letter
,
370
, pp.
46
52
.
22.
Das
,
B. B.
, and
Gopinath
,
A.
, 2006, “
Structure-Property Relations in xCuO-(1–x)As2O3-0.7B(2)O(3) (0.01<=0.05) Glasses by Magnetic Susceptibility Measurements, IR and EPR Spectroscopy
,
Sci. Technol. Hybrid Mater.
,
111
, pp.
103
106
.
You do not currently have access to this content.