Optimal design problems with probabilistic constraints, often referred to as reliability-based design optimization problems, have been the subject of extensive recent studies. Solution methods to date have focused more on improving efficiency rather than accuracy and the global convergence behavior of the solution. A new strategy utilizing an adaptive sequential linear programming (SLP) algorithm is proposed as a promising approach to balance accuracy, efficiency, and convergence. The strategy transforms the nonlinear probabilistic constraints into equivalent deterministic ones using both first order and second order approximations, and applies a filter-based SLP algorithm to reach the optimum. Simple numerical examples show promise for increased accuracy without sacrificing efficiency.

1.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design
, 2nd ed.,
Cambridge University Press
, New York.
2.
Siddall
,
J. N.
, 1983,
Probabilistic Engineering Design—Principles and Applications
,
Marcel Dekker
, New York.
3.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472
125
, pp.
221
232
.
4.
Halder
,
A.
, and
Mahadevan
,
S.
, 1999,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
, New York.
5.
Au
,
S. K.
, and
Beck
,
J. L.
, 1999, “
New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
, pp.
135
158
.
6.
Kalagnanam
,
J. R.
, and
Diwekar
,
U. M.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
39
, pp.
308
319
.
7.
Kim
,
K.-J.
, and
Diwekar
,
U. M.
, 2002, “
Efficient Combinatorial Optimization Under Uncertainty. 1. Algorithmic Development
,”
Ind. Eng. Chem. Res.
0888-5885,
41
, pp.
1276
1284
.
8.
Wu
,
Y.
, 1993, “
Adaptive Importance Sampling (AIS)-Based System Reliability Sensitivity Analysis Method
,” In
Proceedings of the IUTAM Symposium
, June 7–10,
Springer-Verlag
,
New York
, p.
550
.
9.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
(EM1), pp.
111
121
.
10.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
0167-4730,
1
, pp.
177
188
.
11.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Engrg. Mech. Div.
0044-7951,
107
, pp.
1227
1238
.
12.
Ditlevsen
,
O.
, 1979, “
Generalized Second Moment Reliability Index
,”
J. Struct. Mech.
0360-1218,
7
, pp.
435
451
.
13.
Cornell
,
C. A.
, 1967, “
Bounds on Reliability of Structural Systems
,”
American Society of Civil Engineers Proceedings, J. Structural Division
,
93
(ST1), pp.
171
200
.
14.
Mitteau
,
J.-C.
, 1996, “
Error Estimates for FORM and SORM Computations of Failure Probability
,” In
Proceedings of the 7th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability
, Aug. 7–9, pp.
562
565
.
15.
Breitung
,
K.
, 1989, “
Asymptotic Approximations for Probability Integrals
,”
Probab. Eng. Mech.
0266-8920,
4
, pp.
187
190
.
16.
Fiessler
,
B.
,
Neumann
,
H.-J.
, and
Rackwitz
,
R.
, 1979, “
Quadratic Limit States in Structural Reliability
,”
J. Engrg. Mech. Div.
0044-7951,
105
, pp.
661
676
.
17.
Zhao
,
Y.-G.
, and
Ono
,
T.
, 1999, “
General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
, pp.
95
112
.
18.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
, 1987, “
New Light on First- and Second-Order Reliability Methods
,”
Struct. Safety
0167-4730,
4
, pp.
267
284
.
19.
Rackwitz
,
R.
, 2001, “
Reliability Analysis—a Review and Some Perspective
,”
Struct. Safety
0167-4730,
23
, pp.
365
395
.
20.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
225
233
.
21.
Choi
,
K. K.
,
Tu
,
J.
, and
Park
,
Y. H.
, 2001, “
Extensions of Design Potential Concept for Reliability Based Design Optimization to Nonsmooth and Extreme Cases
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
335
350
.
22.
Yang
,
R. J.
, and’
Gu
,
L.
, 2004, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
152
159
.
23.
Wu
,
Y.
, and
Wang
,
W.
, 1998, “
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
1092-0617,
2
, pp.
13
21
.
24.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,” In
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
. Part 4 (of 4), April 7–10 4,
Kissimmee
, FL, pp.
2724
2732
.
25.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single Loop Method for Reliability-Based Design Optimization
,” In
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, September 28–October 2, DETC2004-57255.
26.
Yang
,
R. J.
,
Chuang
,
C.
,
Gu
,
L.
, and
Li
,
G.
, 2004, “
Numerical Experiments of Reliability-Based Optimization Methods
,” In
Proceedings of the 45th, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, 7,
Palm Springs
, CA, pp.
5393
5405
, No. AIAA2004–2032.
27.
Melchers
,
R. E.
, 1987,
Structural Reliability—Analysis and Prediction
,
Ellis Horwood Limited
, Chichester, England.
28.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
Ph.-L.
, 1998, “
On the Global Convergence of an SLP-Filter Algorithm
,” University of Dundee Report,
98
, pp.
1
11
.
29.
Toint
,
Ph.-L.
, 1997, “
Non-Monotone Trust-Region Algorithms for Nonlinear Optimization Subject to Convex Constraints
,”
Math. Program. Series B
,
77
, pp.
69
94
.
30.
Chen
,
T.-Y.
, 1993, “
Calculation of the Move Limits for the Sequential Linear Programming Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
2661
2679
.
31.
Fletcher
,
R.
, and
Leyffer
,
S.
, 2002, “
Nonlinear Programming Without a Penalty Function
,”
Math. Program. Series A
, pp.
239
269
.
32.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
Ph.-L.
, 2002, “
On the Global Convergence of a Filter-SQP Algorithm
,”
J. Optim.
,
13
, pp.
44
59
.
33.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 1993,
Nonlinear Programming: Theory and Algorithms
, 2nd ed.,
Wiley
, New York.
34.
Mangasarian
,
O. L.
, 1969,
Nonlinear Programming
,
McGraw-Hill
, New York.
35.
Matlab
, 2004,
Optimization Toolbox—For use with MATLAB
, 3rd ed.,
Math Works
, Natick, MA.
36.
Lu
,
X.-P.
,
Li
,
H.-L.
, and
Papalambros
,
P. Y.
, 1984, “
A Design Procedure for the Optimization of Vehicle Suspension
,”
Int. J. Veh. Des.
0143-3369,
5
, pp.
129
142
.
37.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability—Based Design Optimization Approaches
,”
J. Mech. Des. Trans. ASME
,
126
, pp.
403
411
.
You do not currently have access to this content.