The steady mechanics of a two-pulley belt drive system are examined where the pulley grooves, belt extension and wedging in the grooves, and the associated friction are considered. The belt is modeled as an axially moving string with the tangential and normal accelerations incorporated. The pulley grooves generate two-dimensional radial and tangential friction forces whose undetermined direction depends on the relative speed between belt and pulley along the contact arc. Different from single-pulley analyses, the entry and exit points between the belt spans and pulleys must be determined in the analysis due to the belt radial penetration into the pulley grooves and the coupling of the driver and driven pulley solutions. A new computational technique is developed to find the steady mechanics of a V-belt drive. This allows system analysis, such as speed/torque loss and maximum tension ratio. The governing boundary value problem (BVP) with undetermined boundaries is converted to a fixed boundary form solvable by a general-purpose BVP solver. Compared to flat belt drives or models that neglect radial friction, significant differences in the steady belt-pulley mechanics arise in terms of belt radial penetration, free span contact points, tension, friction, and speed variations.

1.
Euler
,
M. L.
, 1762, “
Remarques Sur L’effect Du Frottement Dans L’equilibre
,” Mem. Acad. Sci., pp.
265
278
.
2.
Fawcett
,
J. N.
, 1981, “
Chain and Belt Drives - A Review
,”
Shock Vib. Dig.
0583-1024,
13
(
5
), pp.
5
12
.
3.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, England.
4.
Firbank
,
T. C.
, 1970, “
Mechanics of Belt Drives
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
1053
1063
.
5.
Gerbert
,
G. G.
, 1991, “
On Flat Belt Slip
,”
Vehicle Tribology Series
,
16
, pp.
333
339
.
6.
Alciatore
,
D. G.
, and
Traver
,
A. E.
, 1995, “
Multipulley Belt Drive Mechanics: Creep Theory vs Shear Theory
,”
J. Mech. Des.
1050-0472,
117
, pp.
506
511
.
7.
Gerbert
,
G.
, 1999,
Traction Belt Mechanics
,
Chalmers University of Technology
, Sweden.
8.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
, 2000, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
197
206
.
9.
Rubin
,
M. B.
, 2000, “
An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive Systems
,”
J. Mech. Des.
1050-0472,
122
, pp.
311
316
.
10.
Kong
,
L.
, and
Parker
,
R. G.
, 2005, “
Steady Mechanics of Belt-Pulley Systems
,”
ASME J. Appl. Mech.
0021-8936,
72
(
1
), pp.
25
34
.
11.
Kong
,
L.
, and
Parker
,
R. G.
, 2005, “
Mechanics of Serpentine Belt Drives With Tensioner Assemblies and Belt Bending Stiffness
,”
J. Mech. Des.
1050-0472,
127
, pp.
957
966
.
12.
Hornung
,
K. G.
, 1959, “
Factors Influencing the Fatigue Characteristics of Rubber-Textile Machine Elements
,” Ph.D. dissertation, Ohio State University, Columbus.
13.
Gerbert
,
G.
, and
Sorge
,
F.
, 2002, “
Full Sliding Adhesive-Like Contact of V-Belts
,”
J. Mech. Des.
1050-0472,
124
(
4
), pp.
706
712
.
14.
Kong
,
L.
, and
Parker
,
R. G.
, 2004, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
0021-8936,
71
(
1
), pp.
109
119
.
15.
Kong
,
L.
, and
Parker
,
R. G.
, 2003, “
Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives
,”
ASME J. Appl. Mech.
0021-8936,
70
(
5
), pp.
739
750
.
16.
Kong
,
L.
, and
Parker
,
R. G.
, 2005, “
Vibration of an Axially Moving Beam Wrapping on Fixed Pulleys
,”
J. Sound Vib.
0022-460X,
280
(
3-5
), pp.
1066
1074
.
17.
Wang
,
K. W.
, and
Mote
,
C. D.
, Jr.
, 1986, “
Vibration Coupling Analysis of Band/Wheel Mechanical Systems
,”
J. Sound Vib.
0022-460X,
109
, pp.
237
258
.
18.
Mote
,
C. D.
, Jr.
, and
Wu
,
W. Z.
, 1985, “
Vibration Coupling in Continuous Belt and Band Systems
,”
J. Sound Vib.
0022-460X,
102
, pp.
1
9
.
19.
Leamy
,
M. J.
, 2005, “
On a Perturbation Method for the Analysis of Unsteady Belt-Drive Operation
,”
J. Appl. Mech.
0021-8936,
72
, pp.
570
580
.
20.
Tai
,
H. -M.
, and
Sung
,
C. -K.
, 2000, “
Effects of Belt Flexural Rigidity on the Transmission Error of a Carriage-Driving System
,”
J. Mech. Des.
1050-0472,
122
, pp.
213
218
.
21.
Juvinall
,
R.
, and
Marshek
,
K.
, 2000, “
Fundamentals of Machine Component Design
,”
Wiley
, New York.
You do not currently have access to this content.