A three-node six degree-of-freedom per-node line element that is sensitive to axial, bending, and torsional loading is introduced to model single-axis right circular hinges of constant width that are utilized in compliant mechanisms. The Timoshenko model is applied for bending because this particular configuration is virtually short, and provisions are taken that the element is shear-locking free. The Saint Venant theory, which includes warping, is utilized to model torsion of the variable rectangular cross-section circular hinge. The principle of minimum total potential energy is employed to formulate the elemental stiffness and mass matrices, as well as the elemental nodal vector. Static force deflection and modal simulation that are performed based on this finite element model produce results that are in agreement with simulation by commercially available finite element software. The three-node line element is also compared to an analytical model in terms of stiffness and the results are again concurring.

1.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
pp.
151
156
.
2.
Smith
,
S.
,
Badami
,
K. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.
3.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
, pp.
346
352
.
4.
Lobontiu
,
N.
, and
Paine
,
J. S. N.
,
2002
, “
Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms
,”
ASME J. Mech. Des.
,
124
, pp.
479
488
.
5.
Lobontiu, N., 2002, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, Boca Raton.
6.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Non-Linear Forced-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
7.
Xu
,
D.
, and
Anathasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
253
261
.
8.
Howell, L. L., 2001, Compliant Mechanisms, John Wiley & Sons, New York.
9.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
10.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
121
125
.
11.
Kimball
,
C.
, and
Tsai
,
L.-W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
, pp.
223
235
.
12.
Bert
,
C. W.
, and
Wu
,
S.
,
2003
, “
Dynamic Analysis of Nonlinear Torsional Flexible Couplings with Elastic Links
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
507
517
.
13.
Carricato
,
M.
,
Parenti-Castelli
,
V.
, and
Duffy
,
J.
,
2001
, “
Inverse Static Analysis of a Planar System with Flexural Pivots
,”
ASME J. Mech. Des.
,
123
, pp.
43
50
.
14.
Plosa
,
J.
, and
Wojcieh
,
S.
,
2001
, “
Dynamics of Systems with Changing Configuration and with Flexible Beam-Like Links
,”
Mech. Mach. Theory
,
35
, pp.
1515
1534
.
15.
Gerardin, M., and Cardona, A., 2001, “Flexible Multibody Dynamics: A Finite Element Approach,” John Wiley & Sons, Chichester.
16.
Adamiec-Wojcik
,
I.
, and
Wojcieh
,
S.
,
1993
, “
Application of a Rigid Finite Element Method in Dynamic Analysis of Plane Manipulators
,”
Mech. Mach. Theory
,
28
, pp.
327
334
.
17.
Hac
,
M.
, and
Osinski
,
J.
,
1995
, “
Finite Element Formulation of Rigid-Body Motion in Dynamic Analysis of Mechanisms
,”
Comput. Struct.
,
57
(
2
), pp.
213
217
.
18.
Zivkovic
,
M.
,
Kojic
,
M.
,
Slavkovic
,
R.
, and
Grujovic
,
N.
,
2001
, “
A General Beam Finite Element with Deformable Cross Section
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
2651
2680
.
19.
Pilkey
,
W. D.
,
Kang
,
W.
, and
Schramm
,
U.
,
1995
, “
New Structural Matrices for a Beam Element with Shear Deformation
,”
Finite Elem. Anal. Design
,
19
, pp.
25
44
.
20.
Reddy
,
J. N.
,
1997
, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
149
, pp.
113
132
.
21.
Prokic
,
A.
,
2002
, “
A New Finite Element for Analysis of Shear Lag
,”
Comput. Struct.
,
80
, pp.
1011
1024
.
22.
Ortuzar
,
J. M.
, and
Samartin
,
A.
,
1998
, “
Some Consistent Finite Element Formulations of 1-D Beam Models: A Comparative Study
,”
Adv. Eng. Software
,
29
, pp.
667
678
.
23.
Zhang
,
S.
, and
Fasse
,
E.
,
2001
, “
A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge
,”
ASME J. Mech. Des.
,
123
, pp.
141
147
.
24.
Koster, M., 1998, “Constructieprincipes voor het Nauwkeurig Bewegen en Positioneren” Twente University Press The Netherlands.
25.
Murin
,
J.
, and
Kutis
,
V.
,
2002
, “
3D-Beam Element with Continuous Variation of the Cross-Sectional Area
,”
Comput. Struct.
,
80
, pp.
329
338
.
26.
Jiang
,
W.-G.
, and
Henshall
,
J. L.
,
2002
, “
A Coupling Cross-Section Finite Element Model for Torsion Analysis of Prismatic Bars
,”
Eur. J. Mech. A/Solids
,
21
, pp.
513
522
.
27.
Franciosi
,
C.
, and
Mecca
,
M.
,
1998
, “
Some Finite Elements for the Static Analysis of Beams with Varying Cross Section
,”
Comput. Struct.
,
69
, pp.
191
196
.
28.
Peterson, R. E., 1974, “Stress Concentration Factors,” John Wiley & Sons, New York.
29.
Reddy, J. N., 2002, “Energy Principles and Variational Methods in Applied Mechanics,” John Wiley & Sons, Hoboken.
30.
Petyt, M., 1990, “Introduction to Finite Element Vibration Analysis,” Cambridge University Press, Cambridge.
31.
Young, W. C., 1989, “Roark’s Formulas for Stress and Strain,” McGraw-Hill, New York.
32.
Bathe, K.-J., 1982, “Finite Element Procedures in Engineering Analysis,” Prentice Hall, Englewood Cliffs.
You do not currently have access to this content.