Piezoelectric heterogeneous bimorphs have extensive applications in the MEMS area. In order to formulate their displacement distribution more conveniently, a concise analytical solution is described herein. This solution integrates all of the important influence factors, such as geometry and material properties, into a single expression. Secondary effects such as shear, residual stress induced curvature, and electrostiction, are not considered, but they are found to be minimally important based on the accuracy of the predicted results. The expression is verified using the finite element method, and shown to be straightforward compared to the more complicated couple-field FEM analysis for a specific range of materials and thicknesses. The method is subsequently shown to be capable of quickly estimating the displacement in a bimorph beam, making it a useful tool for designing piezoelectric structures.

1.
Itoh
,
T.
, and
Suga
,
T.
,
1993
, “
Development of a Force Sensor for Atomic Force Microscopy Using Piezoelectric Thin Films
,”
Nanotechnology
,
4
, pp.
218
224
.
2.
Luginbuhl
,
Ph.
,
Racine
,
G. A.
,
Lerch
,
Ph.
,
Romanowicz
,
B.
,
Brooks
,
K. G.
,
de Rooij
,
N. F.
,
Renaud
,
Ph.
, and
Setter
,
N.
,
1996
, “
Piezoelectric Cantilever Beams Actuated by PZT sol-gel Thin Film
,”
Sens. Actuators, A
,
54
, pp.
530
535
.
3.
Smits
,
Jan G.
, and
Choi
,
Wai-shing
,
1991
, “
The Constituent Equations of Piezoelectric Heterogeneous Bimorphs
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
383
(
),
May, pp.
256
270
.
4.
Smits
,
Jan G.
, and
Dalke
,
Susan I.
, and
Cooney
,
Thomas K.
,
1991
, “
The Constituent Equations of Piezoelectric Bimorphs
,”
Sens. Actuators, A
,
28
, pp.
41
61
.
5.
Yocum
,
Matthew
, and
Abramovich
,
Haim
,
2002
, “
Static Behavior of Piezoelectric Actuated Beams
,”
Comput. Struct.
,
80
, pp.
1797
1808
.
6.
Saravanos
,
Dimitris A.
, and
Heyliger
,
Paul R.
,
1999
, “
Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells
,”
Appl. Mech. Rev.
,
52
(
10
), pp.
305
319
.
7.
Hwang
,
Woo-Seok
, and
Park
,
Hyun Chul
,
1993
, “
Finite Element Modeling of Piezoelectric Sensors and Actuators
,”
AIAA J.
,
31
(
5
), May, pp.
930
937
.
8.
Cappelleri
,
D. J.
,
Frecker
,
M. I.
,
Simpson
,
T. W.
, and
Snyder
,
A.
,
2002
, “
Design of a PZT Bimorph Actuator using a Metamodel-based Approach
,”
ASME J. Mech. Des.
,
124
, pp.
354
357
.
9.
Devoe
,
D. L.
, and
Pisano
,
A. P.
,
1997
, “
Modeling and Optimal Design of Piezoelectric Cantilever Microactuators
,”
J. Microelectromech. Syst.
,
6
(
3
), pp.
266
270
.
10.
Allik
,
H.
, and
Hughes
,
J. R.
,
1970
, “
Finite Element Method for Piezoelectric Vibration
,”
Int. J. Numer. Methods Eng.
,
2
, pp.
151
157
.
11.
Borrelli
,
A.
, and
Patria
,
M. C.
,
1999
, “
Saint-Veanat’s Principle for a Piezoelectric Body
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
59
(
3
), pp.
1098
1098
.
12.
Benjeddou
,
A.
,
Trindade
,
M. A.
, and
Ohayon
,
R.
,
1997
, “
A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms
,”
J. Intell. Mater. Syst. Struct.
,
8
, pp.
1012
1025
.
13.
Krommer
,
M.
, and
Irschik
,
H.
,
2002
, “
An Electromechanically Coupled Theory for Piezoelastic Beams Taking into Account the Charge Equations of Electrostatics
,”
Acta Mech.
,
154
, pp.
141
158
.
14.
Krommer
,
M.
, and
Irschik
,
H.
,
1999
, “
On the Influence of the Electric Field on Free Transverse Vibration of Smart Beams
,”
Smart Mater. Struct.
,
8
, pp.
401
410
.
15.
Krommer
,
M.
,
2001
, “
On the Correction of the Bernoulli-Euler Beam Theory for Smart Piezoelectric Beams
,”
Smart Mater. Struct.
,
10
, pp.
668
680
.
16.
Mouturet
,
V.
, and
Nogarede
,
B.
,
2002
, “
Optimal Dimensioning of a Piezoelectric Bimorph Actuator
,”
European Physical Journal of Applied Physics
,
17
, pp.
107
118
.
17.
Muralt
,
P.
,
2000
, “
Ferroelectric Thin Films for Micro-Sensors and Actuators: a Review
,”
J. Micromech. Microeng.
,
10
, pp.
136
146
.
18.
Smits
,
J. G.
, and
Choi
,
W.-S.
,
1991
, “
The Constituent Equations of Piezoelectric Heterogeneous Bimorphs
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
3
), pp.
256
270
.
19.
Smits, J. G., and Dalke, S. I., 1989, “The Constituent Equations of Piezoelectric Bimorphs,” IEEE-Ultrasonic Symposium, pp. 781–784.
20.
Elka, E., Elata, D., and Abramovich, 2003, “The Electromechanical Response of Multi-Layered Piezoelectric Structures,” TME Report No. 478, Faculty of Mechanical Engineering, Technion, I.I.T., 32000 Halfa, Israel, July.
You do not currently have access to this content.