Abstract

Blast protection using cellular materials is being actively pursued at research and technology levels. The present work uniquely demonstrates the generation of stress waves, strain waves, and mass velocities in monolithic closed-cell aluminum foams of different densities and lengths, subjected to simulated blast loads, and their combined effect on blast attenuation. The foams were assumed to be resting against a rigid end wall. If the numerically calculated stress at the back face was found less than the applied stress at the front face, the interaction was termed blast mitigation or attenuation. The results show “pressure mitigation” to occur for low-density foams whose plastic strength is less than the applied pressure, but pressure amplification for high-density foams whose plastic strength is higher than the applied pressure. The pressure amplification observed in shorter-length high-density foams transformed to pressure mitigation if the foams were sufficiently long. Based on these results and other stress-, strain-, and velocity-related diagnostics, the underlying mechanism behind blast wave amplification/mitigation and its relation with foam density and length are proposed.

References

1.
Gibson
,
L.
,
2003
, “
Cellular Solids
,”
MRS Bull.
,
28
(
4
), pp.
270
274
.
2.
Li
,
L.
,
Xue
,
P.
, and
Luo
,
G.
,
2016
, “
A Numerical Study on Deformation Mode and Strength Enhancement of Metal Foam Under Dynamic Loading
,”
Mater. Des.
,
110
, pp.
72
79
3.
Dey
,
C.
,
Sahu
,
S. N.
,
Akella
,
K.
, and
Gokhale
,
A. A.
,
2022
, “
Numerical Prediction of Quasi-Static Compression, Indentation Impact and Shock Loading Behaviour of Aluminum Foam Using Idealized Cell Geometry
,”
J. Dyn. Behav. Mater.
,
8
(
3
), pp.
324
339
.
4.
Pang
,
X.
, and
Du
,
H.
,
2017
, “
Dynamic Crushing of Aluminum Foams Under Impact Crushing
,”
Compos. Part B. Eng.
,
112
, pp.
265
277
.
5.
Peroni
,
M.
,
Solomos
,
G.
, and
Pizzinato
,
V.
,
2013
, “
Impact Behaviour Testing of Aluminum Foam
,”
Int. J. Impact Eng.
,
53
, pp.
74
83
.
6.
Kader
,
M. A.
,
Islam
,
M. A.
,
Hazell
,
P. J.
,
Escobedo
,
J. P.
,
Sadatfar
,
M.
,
Brown
,
A. D.
, and
Appleby-Thomas
,
G. J.
,
2016
, “
Modelling and Characterization of Cell Collapse in Aluminum Foams During Dynamic Loading
,”
Int. J. Impact Eng.
,
96
, pp.
78
88
.
7.
Lu
,
G.
,
Shen
,
J.
,
Hou
,
W.
,
Ruan
,
D.
, and
Ong
,
L. S.
,
2008
, “
Dynamic Indentation and Penetration of Aluminum Foams
,”
Int. J. Mech. Sci.
,
50
(
5
), pp.
932
943
.
8.
Hanssen
,
A. G.
,
Enstock
,
L.
, and
Langseth
,
M.
,
2002
, “
Close-Range Blast Loading of Aluminum Foam Panels
,”
Int. J. Impact Eng.
,
27
(
6
), pp.
593
618
.
9.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2003
, “
Preliminary Assessment of Sandwich Plates Subject to Blast Loads
,”
Int. J. Mech. Sci.
,
45
(
4
), pp.
687
705
.
10.
Dharmasena
,
K. P.
,
Wadley
,
H. N. G.
,
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2008
, “
Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1063
1074
.
11.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
.
12.
Yazici
,
M.
,
Wright
,
J.
,
Bertin
,
D.
, and
Shukla
,
A.
,
2014
, “
Experimental and Numerical Study of Foam Filled Corrugated Core Steel Sandwich Structures Subjected to Blast Loading
,”
Compos. Struct.
,
110
, pp.
98
109
.
13.
Karagiozova
,
D.
,
Nurick
,
G. N.
,
Langdon
,
G. S.
,
Chung Kim Yuen
,
S.
,
Chi
,
Y.
, and
Bartle
,
S.
,
2009
, “
Response of Flexible Sandwich-Type Panels to Blast Loading
,”
Compos. Sci. Technol.
,
69
(
6
), pp.
754
763
.
14.
Liu
,
H.
,
Cao
,
Z. K.
,
Yao
,
G. C.
,
Luo
,
H. J.
, and
Zu
,
G. Y.
,
2013
, “
Performance of Aluminum Foam–Steel Panel Sandwich Composites Subjected to Blast Loading
,”
Mater. Des.
,
47
, pp.
483
488
.
15.
Karagiozova
,
D.
,
Langdon
,
G. S.
, and
Nurick
,
G. N.
,
2010
, “
Blast Attenuation in Cymat Foam Core Sacrificial Claddings
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
758
776
.
16.
Zhu
,
F.
,
Chou
,
C. C.
, and
Yang
,
K. H.
,
2011
, “
Shock Enhancement Effect of Lightweight Composite Structures and Materials
,”
Compos. Part B: Eng.
,
42
(
5
), pp.
1202
1211
.
17.
Petel
,
O. E.
,
Ouellet
,
S.
,
Higgins
,
A. J.
, and
Frost
,
D. L.
,
2013
, “
The Elastic–Plastic Behaviour of Foam Under Shock Loading
,”
Shock Waves
,
23
(
1
), pp.
55
67
.
18.
Nian
,
W.
,
Subramaniam
,
K. V. L.
, and
Andreopoulos
,
Y.
,
2016
, “
Experimental Investigation on Blast Response of Cellular Concrete
,”
Int. J. Impact Eng.
,
96
, pp.
105
115
.
19.
Karagiozova
,
D.
,
Langdon
,
G. S.
, and
Nurick
,
G. N.
,
2012
, “
Propagation of Compaction Waves in Metal Foams Exhibiting Strain Hardening
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2763
2777
.
20.
Gokhale
,
A. A.
,
Sahu
,
S. N.
,
Kulkarni
,
V. K. W. R.
,
Sudhakar
,
B.
,
Rao
,
N. R.
,
Rao
,
A. A.
, and
Ramamurthy
,
U.
,
2007
, “
Aluminum Foams Through Liquid Metallurgy: Processing and Properties
,”
Met. Mater. Processes
,
19
, pp.
181
188
.
21.
Ramamurty
,
U.
, and
Paul
,
A.
,
2004
, “
Variability in Mechanical Properties of a Metal Foam
,”
Acta Mater.
,
52
(
4
), pp.
869
876
.
22.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
23.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminum Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.
24.
Hetherington
,
J.
, and
Smith
,
P.
,
1994
,
Blast and Ballistic Loading of Structures
,
CRC Press
,
London
.
25.
Dey
,
C.
,
Gokhale
,
A. A.
, and
Sahu
,
S. N.
,
2023
, “
Investigation of Shock Transmission and Amplification/Mitigation in Aluminum Foams
,”
Mech. Adv. Mater. Struct.
,
31
(
22
), pp.
5518
5531
.
26.
Thorat
,
M.
,
Menezes
,
V.
,
Gokhale
,
A. A.
, and
Dey
,
C.
,
2021
, “
Shock Wave Mediation by Closed-Cell Aluminum Foams
,”
J. Perform. Constr. Facil.
,
35
(
6
), p.
06021005
.
27.
Mazor
,
G.
,
Ben-Dor
,
G.
,
Igra
,
O.
, and
Sorek
,
S.
,
1994
, “
Shock Wave Interaction With Cellular Materials, Part I: Analytical Investigation and Governing Equations
,”
Shock Waves
,
3
(
3
), pp.
159
165
.
28.
Ben-Dor
,
G.
,
Mazor
,
G.
,
Igra
,
O.
,
Sorek
,
S.
, and
Onodera
,
H.
,
1994
, “
Shock Wave Interaction With Cellular Materials Part II: Open Cell Foams; Experimental and Numerical Results
,”
Shock Waves
,
3
(
3
), pp.
167
179
.
You do not currently have access to this content.