Abstract

In this study, the thermal conductivity of 3D-printed 316L stainless steel parts using the bound metal deposition (BMD) method, an extrusion-based 3D-printing technology, was examined experimentally and validated numerically using finite element analysis (FEA). Various critical printing parameters were examined, including infill density, skin overlap percentage, and print sequence to study their effect on the printed thermal conductivity. A heat conduction experiment was performed on the 3D-printed samples of 316L stainless steel followed by a FEA. The results from this investigation revealed that an increase in 3D-printing infill density correlated with a rise in effective thermal conductivity. Conversely, a substantial decrease in thermal conductivity was observed as porosity increased. For instance, at a porosity level of 16.5%, the thermal conductivity experienced a notable 33% reduction compared to the base material. The skin overlap percentage, which governs how much the outer shell of adjacent layers overlaps, was found to impact heat transfer across the overall part surface. A higher overlap percentage was associated with improved thermal conductivity, although it could affect the surface finish of the part. Furthermore, the study explored the print sequence, focusing on whether the outer wall or infill was printed first. Printing the outer wall first resulted in higher thermal conductivity values than that obtained from printing the infill first. Therefore, it is crucial to carefully consider these factors during the BMD 3D-printing process to achieve the desired thermal conductivity properties.

References

1.
Laureto
,
J.
,
Tomasi
,
J.
,
King
,
J. A.
, and
Pearce
,
J. M.
,
2017
, “
Thermal Properties of 3-D Printed Polylactic Acid-Metal Composites
,”
Prog. Addit. Manuf.
,
2
, pp.
57
71
.
2.
Blanco
,
I.
,
Cicala
,
G.
,
Recca
,
G.
, and
Tosto
,
C.
,
2022
, “
Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D Printed Parts With Milled Carbon Fiber Reinforcement
,”
Entropy
,
24
(
5
), p.
654
.
3.
Kim
,
I. H.
, and
Jeong
,
Y. G.
,
2010
, “
Polylactide/Exfoliated Graphite Nanocomposites With Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity
,”
J. Polym. Sci. Part B: Polym. Phys.
,
48
(
8
), pp.
850
858
.
4.
Murariu
,
M.
,
Da Silva Ferreira
,
A.
,
Alexandre
,
M.
, and
Dubois
,
P.
,
2008
, “
Polylactide (PLA) Designed With Desired End-Use Properties: 1. PLA Compositions With Low Molecular Weight Ester-Like Plasticizers and Related Performances
,”
Polym. Adv. Technol.
,
19
(
6
), pp.
636
646
.
5.
Hassouna
,
F.
,
Laachachi
,
A.
,
Chapron
,
D.
,
El Mouedden
,
Y.
,
Toniazzo
,
V.
, and
Ruch
,
D.
,
2011
, “
Development of New Approach Based on Raman Spectroscopy to Study the Dispersion of Expanded Graphite in Poly(Lactide)
,”
Polym. Degrad. Stab.
,
96
(
12
), pp.
2040
2047
.
6.
Elkholy
,
A.
,
Rouby
,
M.
, and
Kempers
,
R.
,
2019
, “
Characterization of the Anisotropic Thermal Conductivity of Additively Manufactured Components by Fused Filament Fabrication
,”
Prog. Addit. Manuf.
,
4
(
2
), pp.
497
515
.
7.
Ibrahim
,
Y.
, and
Kempers
,
R.
,
2022
, “
Effective Thermal Conductivity of 3D-Printed Continuous Wire Polymer Composites
,”
Prog Addit Manuf
,
7
, pp.
699
712
.
8.
Aw
,
Y. Y.
,
Yeoh
,
C. K.
,
Idris
,
M. A.
,
Amali
,
H. K.
,
Aqzna
,
S. S.
, and
Teh
,
P. L.
,
2017
, “
A Study of Tensile and Thermal Properties of 3D Printed Conductive ABS—ZnO Composite
,”
AIP Conf. Proc.
,
1835
(
1
), p.
020008
.
9.
Ebrahimi
,
N. D.
, and
Ju
,
Y. S.
,
2018
, “
Thermal Conductivity of Sintered Copper Samples Prepared Using 3D Printing-Compatible Polymer Composite Filaments
,”
Addit. Manuf.
,
24
, pp.
479
485
.
10.
Shemelya
,
C.
,
De La Rosa
,
A.
,
Torrado
,
A. R.
,
Yu
,
K.
,
Domanowski
,
J.
,
Bonacuse
,
P. J.
,
Martin
,
R. E.
, et al
,
2017
, “
Anisotropy of Thermal Conductivity in 3D Printed Polymer Matrix Composites for Space-Based Cube Satellites
,”
Addit Manuf.
,
16
, pp.
186
196
.
11.
Spoerk
,
M.
,
Savandaiah
,
C.
,
Arbeiter
,
F.
,
Traxler
,
G.
,
Cardon
,
L.
,
Holzer
,
C.
, and
Sapkota
,
J.
,
2018
, “
Anisotropic Properties of Oriented Short Carbon Fibre Filled Polypropylene Parts Fabricated by Extrusion-Based Additive Manufacturing
,”
Composites Part A
,
113
, pp.
95
104
.
12.
Ibrahim
,
Y.
,
Elkholy
,
A.
,
Schofield
,
J. S.
,
Melenka
,
G. W.
, and
Kempers
,
R.
,
2002
, “
Effective Thermal Conductivity of 3D-Printed Continuous Fiber Polymer Composites
,”
Adv. Manuf.: Polym. Compos. Sci.
,
6
(
1
), pp.
17
28
.
13.
Luo
,
F.
,
Yang
,
S.
,
Yan
,
P.
,
Li
,
H.
,
Huang
,
B.
,
Qian
,
Q.
, and
Chen
,
Q.
,
2022
, “
Orientation Behavior and Thermal Conductivity of Liquid Crystal Polymer Composites Based on Three-Dimensional Printing
,”
Composites Part A
,
160
, p.
107059
.
14.
Hassen
,
A. A.
,
Dinwiddie
,
R. B.
,
Kim
,
S.
,
Tekinalp
,
H. L.
,
Kumar
,
V.
,
Lindahl
,
J.
,
Yeole
,
P.
, et al
,
2022
, “
Anisotropic Thermal Behavior of Extrusion-Based Large Scale Additively Manufactured Carbon-Fiber Reinforced Thermoplastic Structures
,”
Polym. Compos.
,
43
(
6
), pp.
3678
3690
.
15.
Berman
,
R.
,
1976
,
Thermal Conduction in Solids
,
Clarendon Press
,
Oxford
.
16.
Chen
,
H.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L.
, and
Chen
,
B.
,
2015
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.
17.
Prasher
,
R.
,
2009
, “
Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts
,”
Appl. Phys. Lett.
,
94
(
1
), pp.
1
4
.
18.
Pietrak
,
K.
, and
Wiśniewski
,
T. S.
,
2014
, “
Methods for Experimental Determination of Solid-Solid Interfacial Thermal Resistance With Application to Composite Materials
,”
J. Power. Technol.
,
94
(
4
), pp.
270
285
.
19.
Nickel Institute
,
n.d.
, “The Role of Stainless Steels in Industrial Heat Exchangers,” https://www.nickelinstitute.org/media/1783/roleofstainlesssteelsinindustrialheatexchangers_9005_.pdf. Accessed March 29, 2019.
20.
Rodriguez
,
P.
,
1997
, “
Selection of materials for heat exchangers
,”
The 3rd International Conference on Heat Exchangers, Boilers, and Pressure Vessels
,
Alexandria, Egypt
,
Apr. 5–6
, pp.
59
72
.
21.
Lee
,
H.-M.
,
Tsai
,
M.-C.
,
Chen
,
H.-L.
, and
Li
,
H.-Y.
,
2017
, “
Stainless Steel Heat Pipe Fabrication, Performance Testing and Modeling
,”
Energy Procedia
,
105
, pp.
4745
4750
.
22.
Silva
,
D.d.O.
, and
Riehl
,
R.R.
,
2016
, “
Thermal Behavior of Water-Copper and Water-Stainless Steel Heat Pipes Operating in Cycles
,”
Proceedings of the 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 31–June 3
, pp.
6
11
.
23.
Brøtan
,
V. O.
,
Berg
,
Å
, and
Sørby
,
K.
,
2016
, “
Additive Manufacturing for Enhanced Performance of Molds
,”
Procedia CIRP
,
54
, pp.
186
190
.
24.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2014
,
Manufacturing Engineering & Technology
, 7th ed.,
Pearson
,
New York
.
25.
TOOLING: How to Select the Right Tool Steel for Mold Cavities, 2019 (n.d.). https://www.ptonline.com/columns/tooling-how-to-select-the-right-tool-steel-formold-cavities, Accessed March 28, 2019.
26.
Simmons
,
J.
,
Daeumer
,
M.
,
Azizi
,
A.
, and
Schiffres
,
S.
,
2018
, “
Local Thermal Conductivity Mapping of Selective Laser Melted 316L Stainless Steel, Solid Freeform Fabrication
,”
Proceedings of the 29th Annual International, Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 13–15
, pp.
1694
1707
.
27.
Simmons
,
J.
,
Chen
,
X.
,
Azizi
,
A.
,
Daeumer
,
M.
,
Zavalij
,
P.
,
Zhou
,
G.
, and
Schiffres
,
S.
,
2020
, “
Influence of Processing and Microstructure on the Local and Bulk Thermal Conductivity of Selective Laser Melted 316L Stainless Steel
,”
Addit. Manuf.
,
32
, p.
100996
.
28.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley
,
New York
.
29.
Koh
,
J. C. Y.
, and
Fortini
,
A.
,
2022
, “
Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials
,”
Int. J. Heat Mass Transfer
,
16
(
11
), pp.
2013
2022
.
30.
Markel
,
V. A.
,
2016
, “
Introduction to the Maxwell Garnett Approximation: Tutorial
,”
J. Opt. Soc. Am. A
,
33
(
1
), p.
1244
.
31.
Lima
,
W. M.
,
Biondo
,
V.
,
Weinand
,
W. R.
,
Nogueira
,
E. S.
,
Medina
,
A. N.
, and
Bento
,
A. C.
,
2005
, “
The Effect of Porosity on Thermal Properties: Towards a Threshold of Particle Contact in Sintered Stainless Steel
,”
J. Phys. Condens. Matter
,
17
(
1
), pp.
1239
1249
.
32.
Gheribi
,
A. E.
,
Gardarein
,
J.
,
Rigollet
,
F.
, and
Chartrand
,
P.
,
2014
, “
Evidence of Second Order Transition Induced by the Porosity in the Thermal Conductivity of Sintered Metals
,”
APL Mater.
,
2
(
7
), p.
076105
.
You do not currently have access to this content.