Abstract

Additively manufactured nickel-based superalloys are now being considered as a replacement for traditionally manufactured components on commercial and military aircraft. While the potential of additive manufacturing for gas turbine engines is promising, the quality and performance of additive manufactured components still need extensive study. Coupon-sized test specimens comprised of as-printed additively and traditionally manufactured Inconel 718 with and without yttria-stabilized zirconia thermal barrier coating were tested under simulated isothermal and thermal cycling combustion conditions that were representative of gas turbine environments. Pre-test scanning electron microscopy indicated that traditionally manufactured coupons had a smooth surface finish with minor imperfections while additive manufactured coupons had a rough surface finish. Post-test scanning electron microscopy exhibited differences in oxide scale between the isothermal and thermal cycling conditions. The thermal cycling condition increased the amount of oxide scale for both additively manufactured and traditionally manufactured Inconel 718. The size of the oxide islands on traditionally manufactured coupons was significantly larger than the additively manufactured coupons. The results indicated that differences in surface roughness may affect the growth of the oxidation scale in a high-temperature combustion environment. The benefits of yttria-stabilized zirconia thermal barrier coating were characterized. The substrate of the coupons experienced little to no formation of oxide scales compared to the uncoated additive and traditionally manufactured coupons. The results further suggested that yttria-stabilized zirconia thermal barrier coating can be utilized to provide both insulation and oxidation protection when desired. Post-test energy-dispersive X-ray spectrometry results corresponded well with known elemental compositions and oxidation mechanisms.

References

1.
Niendorf
,
T.
,
Leuders
,
S.
,
Riemer
,
A.
,
Richard
,
H.
,
Tröster
,
T.
, and
Schwarze
,
D.
,
2013
, “
Highly Anisotropic Steel Processed by Selective Laser Melting
,”
Metall. Mater. Trans. B
,
44
(
4
), pp.
794
796
.
2.
Cormier
,
D.
,
Harrysson
,
A.
, and
West
,
H.
,
2004
, “
Characterization of H13 Steel Produced Via Electron Beam Melting
,”
Rapid Prototyp. J.
,
10
(
1
), pp.
35
41
.
3.
Wang
,
L.
,
Felicelli
,
S. D.
, and
Pratt
,
P.
,
2008
, “
Residual Stresses in LENS Deposited AISI 410 Stainless Steel Plates
,”
Mater. Sci. Eng., A
,
496
(
1–2
), pp.
234
241
.
4.
Ramirez
,
D. A.
,
Murr
,
L. E.
,
Li
,
S. J.
,
Tian
,
Y. X.
,
Martinez
,
E.
,
Martinez
,
J. L.
,
Machado
,
B. I.
,
Gaytan
,
S. M.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2011
, “
Open-Cellular Copper Structures Fabricated by Additive Manufacturing Using Electron Beam Melting
,”
Mater. Sci. Eng., A
,
528
(
16–17
), pp.
5379
5386
.
5.
Helmer
,
H. E.
,
Korner
,
C.
, and
Singer
,
R. F.
,
2014
, “
Additive Manufacturing of Nickel-Based Superalloy Inconel 718 by Selective Electron Beam Melting: Processing Window and Microstructure
,”
J. Mater. Res.
,
29
(
17
), pp.
1987
1996
.
6.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufactured Inconel 718 Superalloy Parts: High-Temperature Oxidation Property and Its Mechanisms
,”
Opt. Laser Technol.
,
62
, pp.
161
171
.
7.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Martinez
,
E.
,
Martinez
,
J. L.
,
Hernandez
,
D. H.
,
Machado
,
B. I.
,
Ramirez
,
D. A.
, and
Wicker
,
R. B.
,
2010
, “
Characterization of Ti-6Al-4 V Open Cellular Foams Fabricated by Additive Manufacturing Using Electron Beam Melting
,”
Mater. Sci. Eng. A
,
527
(
7–8
), pp.
1861
1868
.
8.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2010
, “
A Study of the Micro Structural Evolution During Selective Laser Melting of Ti-6Al-4 V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
9.
Averyanova
,
M.
, and
Bertrand
,
B. V.
,
2011
, “
Control and Optimization of the Selective Laser Melting Process: From the Initial Powder Properties to Their Impact on Final Manufactured Parts Characteristics
,”
European International Powder Metallurgy Congress and Exhibition
,
Barcelona, Spain
,
Oct. 9–12
.
10.
Shih
,
T. I.
, and
Yang
,
V.
,
2014
, “Nickel-Based Superalloys,”
Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics
,
American Institute of Aeronautics and Astronautics, Reston, VA
.
11.
Wlodek
,
S. T.
, and
Field
,
R. D.
,
1994
, “
The Effects of Long-Time Exposure on Alloy 718
,”
Superalloys
,
718
(
625
), pp.
659
670
.
12.
Sanviemvongsak
,
T.
,
Monceau
,
D.
, and
Macquaire
,
B.
,
2018
, “
High Temperature Oxidation of Inconel 718 Manufactured by Laser Beam Melting and Electron Beam Melting: Effect of Surface Topography
,”
Corros. Sci.
,
141
, pp.
127
145
.
13.
Hall
,
R. C.
,
1967
, “
The Metallurgy of Alloy 718
,”
ASME J. Basic Eng.
,
89
(
3
), pp.
511
516
.
14.
Eiselstein
,
H. L.
,
1965
, “
Metallurgy of a Columbium-Hardened Nickel-Chromium-Iron Alloy
,”
ASTM STP
, pp.
62
79
.
15.
Schafrik
,
R. E.
,
Ward
,
D. D.
, and
Groh
,
J. R.
,
2001
, “
Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years
,”
Superalloys
, pp.
1
12
.
16.
Colombié
,
M.
,
2012
,
Matériaux Métalliques (Metallic Materials)
,
Dunod
,
Paris
.
17.
Giggins
,
C. S.
, and
Pettit
,
F. S.
,
1971
, “
Oxidation of Ni-Cr-Al Alloys Between 1000 deg and 1200 °C
,”
J. Electrochem. Soc.
,
118
(
11
), pp.
1782
1790
.
18.
Young
,
D. J.
,
2008
,
High Temperature Oxidation and Corrosion of Metals
,
Elsevier
,
New York
.
19.
Morscher
,
G. N.
,
Panakarajupally
,
R. P.
, and
Hoffman
,
L.
,
2021
, “
The Versatility of HVOF Burner Rig Testing for Ceramic Matrix Composite Evaluation
,”
J. Compos. Sci.
,
5
(
8
), pp.
223
240
.
20.
Fox
,
D. S.
,
Miller
,
R. A.
,
Zhu
,
D.
, and
Perez
,
M.
,
2011
, “
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
,” NASA TM 2011-216986.
21.
Robinson
,
R. C.
,
1999
, “
NASA GRC’s High Pressure Burner Rig Facility and Materials Test Capabilities
,” NASA/CR 19990209411.
22.
Mauget
,
F.
,
Marchand
,
D.
,
Benoit
,
G.
,
Morisset
,
M.
,
Bertheau
,
D.
,
Cormier
,
J.
,
Mendez
,
J.
,
Hervier
,
Z.
,
Ostoja-Kuczynski
,
E.
, and
Moriconi
,
C.
,
2014
, “
Development and Use of a New Burner Rig Facility to Mimic Service Loading Conditions of Ni-Based Single Crystal Superalloys
,”
MATEC Web Conference
,
Glens, France
,
May 12–16
.
23.
Kim
,
T. T.
,
Mall
,
S.
, and
Zawada
,
L. P.
,
2009
, “
Fatigue Characterization of Melt-Infiltrated Woven Hi-Nic-S/BN/SiC CMC Using a Unique Combustion Heating Test Facility
,”
33rd International Conference on Advanced Ceramics and Composites
, Manuscript ID: 529430.
24.
Gazella
,
M. R.
,
Polanka
,
M. D.
,
Kemnitz
,
R. A.
,
Eckley
,
C. C.
,
Sexton
,
B. M.
,
Sebastian
,
J. R.
, and
Hunt
,
R. C.
,
2022
, “
Testing and Characterization of Additive and Traditionally Manufactured Inconel 718 in a Combustion Materials Test Facility
,”
AIAA SciTech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, AIAA-2022-1427.
25.
ASTM
,
E8 Standard Test Methods of Tension Testing of Metallic Materials
,
Annual Book of ASTM Standards, American Society for Testing and Materials
,
3
(
01
).
26.
McBride
,
B. J.
, and
Gordon
,
S.
1996
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Application
,” NASA RP-1311, June.
27.
Surface Optics Corporation
, “
ET10 Handheld Thermal Emissometer
,” Pro-Lite Technology—Light Measurement, Lasers, Optics, Opto-Mechanics and Positioning, Spectroscopy and Spectral Imaging, www.pro-lite.co.uk/File/SOC%20ET10%20Datasheet.pdf, Accessed October 3, 2021.
28.
Greene
,
G. A.
,
Finfrock
,
C. C.
, and
Irvine
,
T. F.
,
2000
, “
Total Hemispherical Emissivity of Oxidized Inconel 718 in the Temperature Range 300–1000 °C
,”
Exp. Therm. Fluid. Sci.
,
22
(
3-4
), pp.
145
153
.
29.
Keller
,
B. P.
,
Nelson
,
S. E.
,
Walton
,
K. L.
,
Ghosh
,
T. K.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
,
2015
, “
Total Hemispherical Emissivity of Inconel 718
,”
Nucl. Eng. Des.
,
287
, pp.
11
18
.
30.
Eldridge
,
J. I.
,
Spuckler
,
C. M.
,
Street
,
K. W.
, and
Markham
,
J. R.
,
2002
, “
Infrared Radiative Properties of Yttria–Stabilized Zirconia Thermal Barrier Coatings
,”
Ceramic Engineering and Science Proceedings
, pp.
417
430
.
31.
Leng
,
Y.
,
2013
,
Materials Characterization: Introduction to Microscopic and Spectroscopic Methods
,
John Wiley and Sons
,
Hoboken, NJ
.
32.
Keyence Corporation
, “
Wide-Area 3D Measurement System Head—VR-5200
,” Keyence America. https://www.keyence.com/products/microscope/macroscope/vr-3000/models/vr-5200/, Accessed September 10, 2022.
33.
Bose
,
S.
,
2017
,
High Temperature Coatings
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
34.
Birks
,
N.
,
Meier
,
G.
, and
Pettit
,
F.
,
2006
,
Introduction to the High Temperature Oxidation of Metals
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
35.
Goldstein
,
J. I.
,
Newbury
,
D. E.
,
Michael
,
J. R.
,
Ritchie
,
N. W.
,
Scott
,
J. H.
, and
Joy
,
D. C.
,
2017
,
Scanning Electron Microscopy and X-ray Microanalysis
, 4th ed.,
Springer
,
New York
.
You do not currently have access to this content.