Abstract

The present study evaluates ratcheting response of 304 stainless steel samples subjected to various step-loading conditions at room and elevated temperatures using the kinematic hardening rules of Ohno–Wang (O–W), AbdelKarim–Ohno (AK–O), and Ahmadzadeh–Varvani (A–V). The hardening rules were employed along with the visco-plastic flow rule to account for the time-dependent response of 304 stainless steel samples. Ratcheting over low–high–low loading sequences consistently showed a small drop in ratcheting strain over the third loading step. This is mainly due to plastic strain accumulation over the first two loading steps preventing ratcheting strain to drop significantly with a drop in the mean stress. Moreover, dynamic recovery terms in these models were further modified through the inclusion of an exponential function developed by Kang to address the dynamic strain aging phenomenon. Low ratcheting rate and shakedown shortly after a few stress cycles within loading steps as operating temperatures varied between 400 and 600 °C were attributed to dynamic strain aging phenomenon in SS304 steel alloy. Progressive ratcheting response and their stress–strain hysteresis loops were highly influenced at various operating temperatures, stress levels, and stress rates. Coefficients in the dynamic recovery term of the A–V model controlled ratcheting progress and hysteresis loops agreeable with those of experimental data over consecutive loading steps. Choices of material constants and the number of segments defined from stress–strain curve based on the O–W and AK–O models noticeably influenced the ratcheting response of steel samples. Predicted ratcheting values by means of the A–V, O–W, and AK–O models were discussed and compared with those of the experimental data.

References

References
1.
Varvani-Farahani
,
A.
, and
Nayebi
,
A.
,
2018
, “
Ratcheting in Pressurized Pipes and Equipment: A Review on Affecting Parameters, Modelling, Safety Codes, and Challenges
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
3
), pp.
503
538
. 10.1111/ffe.12775
2.
Brunsvold
,
A. R.
,
Ahmed
,
H. U.
, and
Stone
,
G. O.
,
1976
, “
Thermal Ratcheting With Kinematic Hardening in a Two-Bar Assembly With Unequal Areas and Properties
,”
ASME J. Eng. Mater. Technol
,
98
(
3
), pp.
256
263
. 10.1115/1.3443376
3.
Mizuno
,
M.
,
Mima
,
Y.
,
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Uniaxial Ratchetting of 316fr Steel at Room Temperature-Part I: Experiments
,”
ASME J. Eng. Mater. Technol
,
122
(
1
), pp.
29
34
. 10.1115/1.482761
4.
Wang
,
W.
,
Zheng
,
X.
,
Yu
,
J.
,
Lin
,
W.
,
Wang
,
C.
, and
Xu
,
J.
,
2017
, “
Time-Dependent Ratcheting of 35CrMo Structural Steel at Elevated Temperature Considering Stress Rates
,”
Mater. High Temp.
,
12
(
1
), pp.
172
178
. 10.1080/09603409.2016.1261511
5.
Zheng
,
X.
,
Wang
,
J.
,
Gao
,
J.
,
Ma
,
L.
,
Yu
,
J.
, and
Xu
,
J.
,
2018
, “
Rate-Dependent Low Cycle Fatigue and Ratcheting of 25Cr2MoVA Steel Under Cyclic Pulsating Tension
,”
Mater. High Temp.
,
35
(
5
), pp.
482
489
. 10.1080/09603409.2017.1386922
6.
Yu
,
D.
,
Chen
,
G.
,
Yu
,
W.
,
Li
,
D.
, and
Chen
,
X.
,
2012
, “
Visco-Plastic Constitutive Modeling on Ohno–Wang Kinematic Hardening Rule for Uniaxial Ratcheting Behavior of Z2CND18. 12N Steel
,”
Int. J. Plast.
,
28
(
1
), pp.
88
101
. 10.1016/j.ijplas.2011.06.001
7.
Naceur
,
B. I.
,
Saï
,
K.
,
Hassan
,
T.
, and
Cailletaud
,
G.
,
2016
, “
Micromechanical Modeling of the Ratcheting Behavior of 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol
,
138
(
2
), p.
021005
. 10.1115/1.4032154
8.
Yoshida
,
F.
,
1990
, “
Uniaxial and Biaxial Creep-Ratcheting Behavior of SUS304 Stainless Steel at Room Temperature
,”
Int. J. Press. Vessel. Pip.
,
44
(
2
), pp.
207
223
. 10.1016/0308-0161(90)90130-A
9.
Ruggles
,
M. B.
, and
Krempl
,
E.
,
1989
, “
The Influence of Test Temperature on the Ratchetting Behavior of Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol
,
111
(
4
), pp.
378
383
. 10.1115/1.3226483
10.
Kang
,
G.
,
Kan
,
Q.
,
Zhang
,
J.
, and
Sun
,
Y.
,
2006
, “
Time-Dependent Ratchetting Experiments of SS304 Stainless Steel
,”
Int. J. Plast.
,
22
(
5
), pp.
858
894
. 10.1016/j.ijplas.2005.05.006
11.
Hong
,
S. G.
, and
Lee
,
S. B.
,
2004
, “
The Tensile and Low-Cycle Fatigue Behavior of Cold Worked 316L Stainless Steel: Influence of Dynamic Strain Aging
,”
Int. J. Fatigue.
,
26
(
8
), pp.
899
910
. 10.1016/j.ijfatigue.2003.12.002
12.
Sarkar
,
A.
,
Nagesha
,
A.
,
Sandhya
,
R.
, and
Mathew
,
M. D.
,
2012
, “
Effect of Mean Stress and Stress Amplitude on the Ratcheting Behaviour of 316LN Stainless Steel Under Dynamic Strain Aging Regime
,”
Mater. High Temp.
,
29
(
4
), pp.
351
358
. 10.3184/096034012X13493571408802
13.
Yu
,
D.
,
Chen
,
X.
,
Yu
,
W.
, and
Chen
,
G.
,
2012
, “
Thermo-Viscoplastic Modeling Incorporating Dynamic Strain Aging Effect on the Uniaxial Behavior of Z2CND18. 12N Stainless Steel
,”
Int. J. Plast.
,
37
, pp.
119
139
. 10.1016/j.ijplas.2012.05.001
14.
De Almeida
,
L. H.
,
Le May
,
I.
, and
Emygdio
,
P. R. O.
,
1998
, “
Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels
,”
Mater. Charact.
,
41
(
4
), pp.
137
150
. 10.1016/S1044-5803(98)00031-X
15.
Rodriguez
,
P.
,
1984
, “
Serrated Plastic Flow
,”
Bull. Mater. Sci.
,
6
(
4
), pp.
653
663
. 10.1007/BF02743993
16.
Ananthakrishna
,
G.
,
2007
, “
Current Theoretical Approaches to Collective Behavior of Dislocations
,”
Phys. Rep.
,
440
(
4–6
), pp.
113
259
. 10.1016/j.physrep.2006.10.003
17.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
. 10.1016/0749-6419(86)90010-0
18.
Krempl
,
E.
, and
Gleason
,
J. M.
,
1996
, “
Isotropic Viscoplasticity Theory Based on Overstress (VBO). The Influence of the Direction of the Dynamic Recovery Term in the Growth Law of the Equilibrium Stress
,”
Int. J. Plast.
,
12
(
6
), pp.
719
735
. 10.1016/S0749-6419(98)80002-8
19.
McDowell
,
D. L.
,
1992
, “
A Nonlinear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity
,”
Int. J. Plast.
,
8
(
6
), pp.
695
728
. 10.1016/0749-6419(92)90024-7
20.
Mayama
,
T.
,
Sasaki
,
K.
, and
Ishikawa
,
H.
,
2007
, “
A Constitutive Model of Cyclic Viscoplasticity Considering Changes in Subsequent Viscoplastic Deformation Due to the Evolution of Dislocation Structures
,”
Int. J. Plast.
,
23
(
5
), pp.
915
930
. 10.1016/j.ijplas.2006.10.003
21.
Zheng
,
X.
,
Wang
,
W.
,
Guo
,
S.
, and
Xuan
,
F.
,
2019
, “
Viscoplastic Constitutive Modelling of the Ratchetting Behavior of 35CrMo Steel Under Cyclic Uniaxial Tensile Loading With a Wide Range of Stress Amplitude
,”
Eur. J. Mech. A/Solids
,
76
, pp.
312
320
. 10.1016/j.euromechsol.2019.04.009
22.
Ohno
,
N.
, and
Wang
,
J.-D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
. 10.1016/0749-6419(93)90042-O
23.
Haupt
,
A.
,
Munz
,
D.
,
Scheibe
,
W.
,
Schinke
,
B.
,
Schmitt
,
R.
, and
Sklenicka
,
V.
,
1996
, “
High Temperature Creep and Cyclic Deformation Behaviour of AISI 316 L(N) Austenitic Steel and Its Modelling With Unified Constitutive Equations
,”
Nucl. Eng. Des.
,
162
(
1
), pp.
13
20
. 10.1016/0029-5493(95)01139-0
24.
Kang
,
G.
,
Liu
,
Y.
,
Ding
,
J.
, and
Gao
,
Q.
,
2009
, “
Uniaxial Ratcheting and Fatigue Failure of Tempered 42CrMo Steel: Damage Evolution and Damage-Coupled Visco-Plastic Constitutive Model
,”
Int. J. Plast.
,
25
(
5
), pp.
838
860
. 10.1016/j.ijplas.2008.06.004
25.
Taleb
,
L.
, and
Cailletaud
,
G.
,
2010
, “
An Updated Version of the Multimechanism Model for Cyclic Plasticity
,”
Int. J. Plast.
,
26
(
6
), pp.
859
874
. 10.1016/j.ijplas.2009.11.002
26.
Larsson
,
R.
, and
Nilsson
,
L.
,
2012
, “
On the Modelling of Strain Ageing in a Metastable Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
46
58
. 10.1016/j.jmatprotec.2011.08.003
27.
Ho
,
K.
, and
Krempl
,
E.
,
2002
, “
Extension of the Viscoplasticity Theory Based on Overstress (VBO) to Capture Non-Standard Rate Dependence in Solids
,”
Int. J. Plast.
,
18
(
7
), pp.
851
872
. 10.1016/S0749-6419(01)00011-0
28.
Miller
,
A. K.
, and
Sherby
,
O. D.
,
1978
, “
A Simplified Phenomenological Model for Non-Elastic Deformation: Predictions of Pure Aluminum Behavior and Incorporation of Solute Strengthening Effects
,”
Acta Metall.
,
26
(
2
), pp.
289
304
. 10.1016/0001-6160(78)90129-3
29.
Kang
,
G.
,
2005
, “
Uniaxial Ratcheting of Ss316L Stainless Steel At High Temperature : Experiments and Simulations
,”
18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18)
,
Beijing, China
,
Aug. 7–12
, pp.
1006
1014
.
30.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratchetting With Steady-State
,”
Int. J. Plast.
,
16
(
3
), pp.
225
240
. 10.1016/S0749-6419(99)00052-2
31.
Gao
,
Q.
,
Kang
,
G. Z.
, and
Yang
,
X. J.
,
2003
, “
Uniaxial Ratcheting of SS304 Stainless Steel at High Temperatures: Visco-Plastic Constitutive Model
,”
Theor. Appl. Fract. Mech.
,
40
(
1
), pp.
105
111
. 10.1016/S0167-8442(03)00038-7
32.
Perzyna
,
P.
,
1963
, “
The Constitutive Equation for Work-Hardening and Rate Sensitive Plastic Materials
,”
Proc. Vib. Probl.
,
4
(
3
), pp.
281
290
.
33.
Xing
,
R.
,
Yu
,
D.
,
Shi
,
S.
, and
Chen
,
X.
,
2019
, “
Cyclic Deformation of 316L Stainless Steel and Constitutive Modeling Under Non-Proportional Variable Loading Path
,”
Int. J. Plast.
,
120
, pp.
127
146
. 10.1016/j.ijplas.2019.04.016
34.
Goodall
,
I. W.
,
Hales
,
R.
, and
Walters
,
D. J.
,
1981
, “On Constitutive Relations and Failure Criteria of an Austenitic Steel Under Cyclic Loading at Elevated Temperature,”
Creep in Structures
,
A. R. S.
Ponter
and
D. R.
Hayhurst
, eds.,
Springer
,
New York
, pp.
103
127
.
35.
Karvan
,
P.
, and
Varvani-Farahani
,
A.
,
2019
, “
Isotropic-Kinematic Hardening Framework to Assess Ratcheting Response of Steel Samples Undergoing Asymmetric Loading Cycles
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
1
), pp.
295
306
. 10.1111/ffe.12905
36.
Karvan
,
P.
, and
Varvani-Farahani
,
A.
,
2019
, “
Ratcheting Assessment of Visco-Plastic Alloys at Ambient Temperature by Means of the AV and OW Hardening Rule Frameworks
,”
Mech. Mater.
,
130
, pp.
95
104
. 10.1016/j.mechmat.2019.01.007
37.
Karvan
,
P.
, and
Varvani-Farahani
,
A.
,
2018
, “
Ratcheting Assessment of 304 Steel Samples by Means of Two Kinematic Hardening Rules Coupled With Isotropic Hardening Descriptions
,”
Int. J. Mech. Sci.
,
149
, pp.
190
200
. 10.1016/j.ijmecsci.2018.09.045
38.
Karvan
,
P.
, and
Varvani-Farahani
,
A.
,
2019
, “
Time-Dependent Ratcheting Assessment of Steel Samples Undergoing Multi-Step Loading Cycles Through Use of Hardening Rules
,”
Mater. Today Commun.
,
31
, p.
100682
. 10.1016/j.mtcomm.2019.100682
39.
Kang
,
G.
,
Gao
,
Q.
, and
Yang
,
X.
,
2002
, “
Experimental Study on the Cyclic Deformation and Plastic Flow of U71Mn Rail Steel
,”
Int. J. Mech. Sci.
,
44
(
8
), pp.
1647
1663
. 10.1016/S0020-7403(02)00062-0
40.
Ding
,
J.
,
Kang
,
G.
,
Kan
,
Q.
, and
Liu
,
Y.
,
2012
, “
Constitutive Model for Uniaxial Time-Dependent Ratcheting of 6061-T6 Aluminum Alloy
,”
Comput. Mater. Sci.
,
57
, pp.
67
72
. 10.1016/j.commatsci.2011.06.015
41.
Kang
,
G.
,
Gao
,
Q.
, and
Yang
,
X.
,
2002
, “
A Visco–Plastic Constitutive Model Incorporated With Cyclic Hardening for Uniaxial/Multiaxial Ratcheting of SS304 Stainless Steel at Room Temperature
,”
Mech. Mater.
,
34
(
9
), pp.
521
531
. 10.1016/S0167-6636(02)00153-9
42.
Chaboche
,
J. L.
,
Van
,
K. D.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
.”
Technical Report L11/3
, p.
1
10
.
43.
Ohno
,
N.
,
1998
, “
Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
251
261
. 10.1016/S0020-7403(97)00053-2
44.
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2013
, “
Ratcheting Assessment of Materials Based on the Modified Armstrong–Frederick Hardening Rule at Various Uniaxial Stress Levels
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
12
), pp.
1232
1245
. 10.1111/ffe.12059
45.
Varvani-Farahani
,
A.
,
2017
, “
A Comparative Study in Descriptions of Coupled Kinematic Hardening Rules and Ratcheting Assessment Over Asymmetric Stress Cycles
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
6
), pp.
882
893
. 10.1111/ffe.12549
46.
Karvan
,
P.
, and
Varvani-Farahani
,
A.
,
2020
, “
Visco-Plastic Ratcheting Response of Materials Undergoing Step-Loading Conditions With Various Cyclic Stress Levels
,”
J. Mater. Eng. Perform.
, in press. 10.1115/1.4045981
47.
Kang
,
G.
,
Gao
,
Q.
,
Cai
,
L.
, and
Sun
,
Y.
,
2002
, “
Experimental Study on Uniaxial and Nonproportionally Multiaxial Ratcheting of SS304 Stainless Steel at Room and High Temperatures
,”
Nucl. Eng. Des.
,
216
(
1–3
), pp.
13
26
. 10.1016/S0029-5493(02)00062-6
48.
Kang
,
G.
,
Li
,
Y.
, and
Gao
,
Q.
,
2005
, “
Non-Proportionally Multiaxial Ratcheting of Cyclic Hardening Materials at Elevated Temperatures: Experiments and Simulations
,”
Mech. Mater.
,
37
(
11
), pp.
1101
1118
. 10.1016/j.mechmat.2005.01.006
49.
Ohno
,
N.
,
1990
, “
Recent Topics in Constitutiwe Modeling of Cyclic Plasticity and Viscoplasticity
,”
ASME Appl. Mech. Rev.
,
43
(
11
), pp.
283
295
. 10.1115/1.3119155
50.
Nakamura
,
T.
,
1998
, “
Application of Viscoplasticity Theory Based on Overstress (VBO) to High Temperature Cyclic Deformation of 316FR Steel
,”
JSME Int. Journal, Ser. A Mech. Mater. Eng.
,
41
(
4
), pp.
539
546
. 10.1299/jsmea.41.539
51.
Yaguchi
,
M.
, and
Takahashi
,
Y.
,
2000
, “
A Viscoplastic Constitutive Model Incorporating Dynamic Strain Aging Effect During Cyclic Deformation Conditions
,”
Int. J. Plast.
,
16
(
3–4
), pp.
241
262
. 10.1016/S0749-6419(99)00053-4
52.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
. 10.1115/1.2823355
53.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
,
2005
, “
On the Ohno-Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
,
21
(
1
), pp.
161
184
. 10.1016/j.ijplas.2004.05.005
You do not currently have access to this content.