Abstract

Instrumented indentation tests provide an attractive means for obtaining data to characterize the plastic response of engineering materials. One difficulty in doing this is that the relation between the measured indentation force versus indentation depth response and the plastic stress-strain response is not unique. Materials with very different uniaxial stress-strain curves can give essentially identical curves of indentation force versus indentation depth. Zhang et al. (2019, “Identification of Plastic Properties From Conical Indentation Using a Bayesian-Type Statistical Approach,” ASME J. Appl. Mech., 86, p. 011002) numerically generated “experimental” conical indentation data and showed that using surface profile data and indentation force versus indentation depth data together with a Bayesian-type statistical analysis permitted the uniaxial plastic stress-strain response to be identified even for materials with indistinguishable indentation force versus indentation depth curves. The same form of hardening relation was used in the identification process as was used to generate the “experimental” data. Generally, a variety of power law expressions have been used to characterize the uniaxial plastic stress-strain response of engineering materials, and, of course, the form that gives the best fit for a material is not known a priori. Here, we use the same Bayesian statistics-based analysis but consider four characterizations of the plastic uniaxial stress-strain response and show that the identification of the hardening relation parameters and the associated uniaxial stress-strain response is not very sensitive to the form of the power law strain hardening relation chosen even with data that have significant noise.

References

References
1.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1999
, “
Can Stress-Strain Relationships Be Obtained From Indentation Curves Using Conical and Pyramidal Indenters?
,”
J. Mater. Res.
,
14
(
9
), pp.
3493
3496
. 10.1557/JMR.1999.0472
2.
Luo
,
J.
,
Lin
,
J.
, and
Dean
,
T. A.
,
2006
, “
A Study on the Determination of Mechanical Properties of a Power Law Material by Its Indentation Force-Depth Curve
,”
Philos. Mag.
,
86
(
19
), pp.
2881
2905
. 10.1080/14786430600640528
3.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
. 10.1016/j.jmps.2007.01.010
4.
Dao
,
M.
,
Chollacoop
,
N. V.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
. 10.1016/S1359-6454(01)00295-6
5.
Bucaille
,
J. L.
,
Stauss
,
S.
,
Felder
,
E.
, and
Michler
,
J.
,
2003
, “
Determination of Plastic Properties of Metals by Instrumented Indentation Using Different Sharp Indenters
,”
Acta Mater.
,
51
(
6
), pp.
1663
1678
. 10.1016/S1359-6454(02)00568-2
6.
Cao
,
Y. P.
, and
Lu
,
J.
,
2004
, “
A New Method to Extract the Plastic Properties of Metal Materials From an Instrumented Spherical Indentation Loading Curve
,”
Acta Mater.
,
52
(
13
), pp.
4023
4032
. 10.1016/j.actamat.2004.05.018
7.
Ogasawara
,
N.
,
Chiba
,
N.
, and
Chen
,
X.
,
2005
, “
Representative Strain of Indentation Analysis
,”
J. Mater. Res.
,
20
(
8
), pp.
2225
2234
. 10.1557/JMR.2005.0280
8.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Scaling Approach to Conical Indentation in Elastic-Plastic Solids With Work Hardening
,”
J. Appl. Phys.
,
84
(
3
), pp.
1284
1291
. 10.1063/1.368196
9.
Beghini
,
M.
,
Bertini
,
L.
, and
Fontanari
,
V.
,
2006
, “
Evaluation of the Stress-Strain Curve of Metallic Materials by Spherical Indentation
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2441
2459
. 10.1016/j.ijsolstr.2005.06.068
10.
Luo
,
J.
, and
Lin
,
J.
,
2007
, “
A Study on the Determination of Plastic Properties of Metals by Instrumented Indentation Using Two Sharp Indenters
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
5803
5817
. 10.1016/j.ijsolstr.2007.01.029
11.
Kang
,
J. J.
,
Becker
,
A. A.
,
Wen
,
W.
, and
Sun
,
W.
,
2018
, “
Extracting Elastic-Plastic Properties From Experimental Loading-Unloading Indentation Curves Using Different Optimization Techniques
,”
Int. J. Mech. Sci.
,
144
, pp.
102
109
. 10.1016/j.ijmecsci.2018.05.043
12.
Huber
,
N.
, and
Tsakmakis
,
C.
,
1999
, “
Determination of Constitutive Properties From Spherical Indentation Data Using Neural Networks. Part I: The Case of Pure Kinematic Hardening in Plasticity Laws
,”
J. Mech. Phys. Solids
,
47
(
7
), pp.
1569
1588
. 10.1016/S0022-5096(98)00109-4
13.
Zhang
,
Y.
,
Hart
,
J. D.
, and
Needleman
,
A.
,
2019
, “
Identification of Plastic Properties From Conical Indentation Using a Bayesian-Type Statistical Approach
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011002
. 10.1115/1.4041352
14.
Mostafavi
,
M.
,
Collins
,
D. M.
,
Cai
,
B.
,
Bradley
,
R.
,
Atwood
,
R. C.
,
Reinhard
,
C.
,
Jiang
,
X.
,
Galano
,
M.
,
Lee
,
P. D.
, and
Marrow
,
T. J.
,
2015
, “
Yield Behavior Beneath Hardness Indentations in Ductile Metals, Measured by Three-Dimensional Computed X-Ray Tomography and Digital Volume Correlation
,”
Acta Mater.
,
82
, pp.
468
482
. 10.1016/j.actamat.2014.08.046
15.
Meng
,
L.
,
Breitkopf
,
P.
,
Raghavan
,
B.
,
Mauvoisin
,
G.
,
Bartier
,
O.
, and
Hernot
,
X.
,
2015
, “
Identification of Material Properties Using Indentation Test and Shape Manifold Learning Approach
,”
Comput. Methods Appl. Mech. Eng.
,
297
, pp.
239
257
. 10.1016/j.cma.2015.09.004
16.
Mostafavi
,
M.
,
Bradley
,
R.
,
Armstrong
,
D. E. J.
, and
Marrow
,
T. J.
,
2016
, “
Quantifying Yield Behaviour in Metals by X-Ray Nanotomography
,”
Sci. Rep.
,
6
(
1
), p.
34346
. 10.1038/srep34346
17.
Wang
,
M.
,
Wu
,
J.
,
Hui
,
Y.
,
Zhang
,
Z.
,
Zhan
,
X.
, and
Guo
,
R.
,
2017
, “
Identification of Elastic-Plastic Properties of Metal Materials by Using the Residual Imprint of Spherical Indentation
,”
Mater. Sci. Eng. A
,
679
, pp.
143
154
. 10.1016/j.msea.2016.10.025
18.
Iracheta
,
O.
,
Bennett
,
C. J.
, and
Sun
,
W.
,
2019
, “
A Holistic Inverse Approach Based on a Multi-Objective Function Optimisation Model to Recover Elastic-Plastic Properties of Materials From the Depth-Sensing Indentation Test
,”
J. Mech. Phys. Solids
,
128
, pp.
1
20
. 10.1016/j.jmps.2019.04.001
19.
Capehart
,
T. W.
, and
Cheng
,
Y. T.
,
2003
, “
Determining Constitutive Models From Conical Indentation: Sensitivity Analysis
,”
J. Mater. Res.
,
18
(
4
), pp.
827
832
. 10.1557/JMR.2003.0113
20.
Wang
,
M.
, and
Wu
,
J.
,
2019
, “
Identification of Plastic Properties of Metal Materials Using Spherical Indentation Experiment and Bayesian Model Updating Approach
,”
Int. J. Mech. Sci.
,
151
, pp.
733
745
. 10.1016/j.ijmecsci.2018.12.027
21.
ABAQUS/CAE
,
2017
, “
Simulia
,”
Dassault Systemes
,
Johnston, RI
.
22.
Matlab
,
2016
, “
MATLAB Release 2016a, function normrnd
,”
copyright 1993–2015
,
The MathWorks, Inc
.,
MA
.
23.
Needleman
,
A.
,
1975
, “
Postbifurcation Behavior and Imperfection Sensitivity of Elastic-Plastic Circular Plates
,”
Int. J. Mech. Sci.
,
17
(
1
), pp.
1
13
. 10.1016/0020-7403(75)90058-2
24.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
. 10.1016/0013-7944(85)90052-9
You do not currently have access to this content.