Abstract

In this study, parent aluminum (Al), silicon carbide (SiC) reinforced Al, zirconia (ZrO2) coated SiC reinforced Al, and lithium zirconate spinel (Li2ZrO3, LZO) encapsulated SiC incorporated Al metal matrix composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron backscattered diffraction (EBSD) analysis were conducted for detailed and deep understanding of possible mechanism and microstructure at longitudinal cross sections of the samples. Further, the room temperature mechanical properties and thermal cyclic (−100 to 400 °C) damping performance of the friction stir processed composites were studied. The results obtained in this investigation show that storage modulus of pristine Al, SiC reinforced Al, ZrO2 coated SiC reinforced Al, and LZO coated SiC reinforced Al were improved by a factor of 1.09, 1.17, 1.09, and 1.38, respectively, after FSP. Additionally, the ultimate tensile strength (UTS) and hardness of the friction stir processed SiC/Li2ZrO3/Al composite were improved by a factor of 1.08 and 1.11, respectively, after FSP was compared with an unprocessed composite.

References

References
1.
Miracle
,
D. B.
,
2005
, “
Metal Matrix Composites-From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2526
2540
. 10.1016/j.compscitech.2005.05.027
2.
Luo
,
Z. P.
,
2006
, “
Crystallography of SiC/MgAl2O4/Al Interfaces in A Pre-Oxidized SiC Reinforced SiC/Al Composite
,”
Acta Mater.
,
54
(
1
), pp.
47
58
. 10.1016/j.actamat.2005.08.022
3.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2017
, “
Wear Modelling of Al-Al2O3 Functionally Graded Material Prepared by FDM Assisted Investment Castings Using Dimensionless Analysis
,”
ASME J. Eng. Mater. Technol.
,
139
(
1
), p.
011002
. 10.1115/1.4034692
4.
Ruiz-Navas
,
E. M.
,
Delgado
,
M. L.
, and
Trindade
,
B.
,
2009
, “
Improvement of The Bonding Interface of A Sintered Al 2014–(Ti5Si3)p Composite by The Copper Coating of the Reinforcement
,”
Compos., Part A
,
40
(
8
), pp.
1283
1290
. 10.1016/j.compositesa.2009.05.022
5.
Narvan
,
M.
,
Behnagh
,
R. A.
,
Shen
,
N.
,
Givi
,
M. K. B.
, and
Ding
,
H.
,
2016
, “
Shear Compaction Processing of SiC Nanoparticles Reinforced Magnesium Composites Directly From Magnesium Chips
,”
J. Manuf. Process.
,
22
, pp.
39
48
. 10.1016/j.jmapro.2016.01.010
6.
Barrett
,
C. S.
, and
Massalski
,
T. B.
,
1966
,
Structure of Metals
,
McGraw-Hill
,
New York
, Vol.
535
.
7.
Valiev
,
R. Z.
,
Korznikov
,
A. V.
, and
Mulyukov
,
R. R.
,
1993
, “
Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation
,”
Mater. Sci. Eng. A
,
168
(
2
), pp.
141
148
. 10.1016/0921-5093(93)90717-S
8.
Valiev
,
R. Z.
,
Estrin
,
Y.
,
Horita
,
Z.
,
Langdon
,
T. G.
,
Zechetbauer
,
M. J.
, and
Zhu
,
Y. T.
,
2006
, “
Producing Bulk Ultra-Fine-Grained Materials by Severe Plastic Deformation
,”
JOM
,
58
(
4
), pp.
33
39
. 10.1007/s11837-006-0213-7
9.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
,
2000
, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
,
45
(
2
), pp.
103
189
. 10.1016/S0079-6425(99)00007-9
10.
Langdon
,
T. G.
,
2010
, “
Processing by Severe Plastic Deformation: Historical Developments and Current Impact
,”
Mater. Sci. Forum
,
667–669
, pp.
9
14
. 10.4028/www.scientific.net/MSF.667-669.9
11.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Templesmith
,
P.
, and
Dawes
,
C. J.
G.B. Patent Application No. 9125978.8,
Dec.
1991.
12.
Mishra
,
R. S.
,
Mahoney
,
M. W.
,
McFadden
,
S. X.
,
Mara
,
N. A.
, and
Mukherjee
,
A. K.
,
2000
, “
High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy
,”
Scr. Mater.
,
42
(
2
), pp.
163
168
. 10.1016/S1359-6462(99)00329-2
13.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39A
, pp.
642
658
.
14.
Paidar
,
M.
,
Sadeghi
,
F.
,
Najafi
,
H.
, and
Khodabandeh
,
A. R.
,
2015
, “
Effect of Pin and Shoulder Geometry on Stir Zone and Mechanical Properties of Friction Stir Spot-Welded Aluminum Alloy 2024-T3 Sheets
,”
ASME J. Eng. Mater. Technol.
,
137
(3), p.
031004
.10.1115/1.4030197
15.
Su
,
J. Q.
,
Nelson
,
W. T.
, and
Sterling
,
C. J.
,
2005
, “
Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys
,”
Scr. Mater.
,
52
(
2
), pp.
135
140
. 10.1016/j.scriptamat.2004.09.014
16.
Kim
,
S. H.
, and
Hahn
,
H. T.
,
2006
, “
Size Effect in Particulate Metal Matrix Composites: An Analytical Approach
,”
Adv. Comp. Mater.
,
15
(
2
), pp.
175
191
. 10.1163/156855106777873888
17.
Darras
,
B. M.
,
Khraishes
,
M. K.
,
Abu-Farha
,
F. K.
, and
Omar
,
M. A.
,
2007
, “
Friction Stir Processing of Commercial AZ31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
77
81
. 10.1016/j.jmatprotec.2007.03.045
18.
Nascimento
,
F.
,
Satos
,
T.
,
Vilaca
,
P.
, and
Miranda
,
R. M.
,
2009
, “
Microstructure Modification and Ductility Enhancement of Surface Modified by FSP in Aluminum Alloys
,”
Mater. Sci. Eng. A
,
506
(
1–2
), pp.
16
22
. 10.1016/j.msea.2009.01.008
19.
Karthikeyan
,
L.
, and
Senthilkumar
,
V. S.
,
2011
, “
Relationship Between Process Parameter and Mechanical Properties of Friction Stir Processed AA6063-T6 Aluminum Alloy
,”
Mater. Des.
,
32
(
5
), pp.
3085
3091
. 10.1016/j.matdes.2010.12.049
20.
Cavaliere
,
P.
, and
Squilace
,
A.
,
2005
, “
High Temperature Deformation of Friction Stir Processed 7075 Aluminum Alloy
,”
Mater. Charact.
,
55
(
2
), pp.
136
142
. 10.1016/j.matchar.2005.04.007
21.
Charit
,
I.
, and
Mishra
,
R. S.
,
2003
, “
High Strain Date Superplasticity in a Commercial 2024 Al Alloy Via Friction Stir Processing
,”
Mater. Sci. Eng. A
,
359
(
1–2
), pp.
290
296
. 10.1016/S0921-5093(03)00367-8
22.
Saito
,
N.
,
Shigematsu
,
I.
,
Komaya
,
T.
,
Tamaki
,
T.
,
Yamauchi
,
G.
, and
Nakamura
,
M.
,
2001
, “
Grain Refinement of 1050 Aluminum Alloy by Friction Stir Processing
,”
J. Mater. Sci. Lett.
,
20
(
20
), pp.
1913
1915
. 10.1023/A:1012882413401
23.
Know
,
Y. J.
,
Shigematsu
,
I.
, and
Saito
,
N.
,
2003
, “
Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process
,”
Scr. Mater.
,
49
(
8
), pp.
785
790
. 10.1016/S1359-6462(03)00407-X
24.
Ke
,
L.
,
Huang
,
C.
,
Xing
,
L.
, and
Huang
,
K.
,
2010
, “
Al–Ni Intermetallic Composites Produced In-Situ by Friction Stir Processing
,”
J. Alloys Compd.
,
503
(
2
), pp.
494
499
. 10.1016/j.jallcom.2010.05.040
25.
Misak
,
H. E.
,
Widener
,
C. A.
,
Burford
,
D. A.
, and
Asmatulu
,
R.
,
2014
, “
Fabrication and Characterization of Carbon Nanotube Nanocomposites Into 2024-T3 Al Substrates Via Friction Stir Welding Process
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
024501
. 10.1115/1.4026838
26.
Zhang
,
Y.
,
Ma
,
N.
,
Le
,
Y.
,
Li
,
S.
, and
Wang
,
H.
,
2008
, “
Study on Damping Behavior of A356 Alloy After Grain Refinement
,”
Mater. Des.
,
29
(
3
), pp.
706
708
. 10.1016/j.matdes.2007.03.002
27.
Emadoddin
,
E.
,
Tajally
,
M.
, and
Masoumi
,
M.
,
2012
, “
Damping Behavior of Al/SiCP Multilayer Composite Manufactured by Roll Bonding
,”
Mater. Des.
,
42
, pp.
334
338
. 10.1016/j.matdes.2012.06.009
28.
Sutou
,
Y.
,
Omori
,
T.
,
Koeda
,
N.
,
Kainuma
,
R.
, and
Ishida
,
K.
,
2006
, “
Effects of Grain Size and Texture on Damping Properties of Cu–Al–Mn Based Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
438–440
, pp.
743
746
. 10.1016/j.msea.2006.02.085
29.
Gu
,
J.
,
Zhang
,
X.
,
Gu
,
M.
,
Gu
,
M.
, and
Wang
,
X.
,
2004
, “
Internal Friction Peak and Damping Mechanism in High Damping 6061Al/SiCp/Gr Hybrid Metal Matrix Composite
,”
J. Alloys Compd.
,
372
(
1–2
), pp.
304
308
. 10.1016/j.jallcom.2003.10.021
30.
Singh
,
S.
, and
Pal
,
K.
,
2015
, “
Effect of Surface Modified Silicon Carbide Particles With Al2O3 and Nanocrystalline Spinel ZnAl2O4 on Mechanical and Damping Properties of the Composite
,”
Mater. Sci. Eng. A
,
644
, pp.
325
336
. 10.1016/j.msea.2015.07.057
31.
Singh
,
S.
, and
Pal
,
K.
,
2015
, “
Effect of Surface Modification on Silicon Carbide Particles With Nanocrystalline Spinel LZO for Enhanced Damping and Mechanical Property
,”
Mater. Des.
,
82
, pp.
223
238
. 10.1016/j.matdes.2015.05.076
32.
Singh
,
S.
, and
Pal
,
K.
,
2017
, “
Influence of UFG on Damping and Mechanical Properties of the Composite Reinforced With Nanocrystalline Spinel MgAl2O4–SiC Core-Shell Microcomposites
,”
Mater. Charact.
,
123
, pp.
244
255
. 10.1016/j.matchar.2016.11.042
33.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R
,
50
(
1–2
), pp.
1
78
. 10.1016/j.mser.2005.07.001
34.
McNelley
,
T. R.
,
Swaminathan
,
S.
, and
Su
,
J. Q.
,
2008
, “
Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys
,”
Scr. Mater.
,
58
(
5
), pp.
349
354
. 10.1016/j.scriptamat.2007.09.064
35.
Seidel
,
T. U.
, and
Reynolds
,
A. P.
,
2001
, “
Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique
,”
Metall. Mater. Trans. A
,
32
(
11
), pp.
2879
2884
. 10.1007/s11661-001-1038-1
36.
McKimpson
,
M. G.
, and
Scott
,
T. E.
,
1989
, “
Processing and Properties of Metal Matrix Composites Containing Discontinuous Reinforcement
,”
Mater. Sci. Eng. A
,
107
, pp.
93
106
. 10.1016/0921-5093(89)90378-X
37.
Singh
,
J.
,
Goel
,
S. K.
,
Mathur
,
V. N. S.
, and
Kapoor
,
M. L.
,
1991
, “
Elevated Temperature Tensile Properties of Squeeze-Cast Al-Al2O3-MgO Particulate MMCs up to 573 K
,”
J. Mater. Sci.
,
26
(
10
), pp.
2750
2758
. 10.1007/BF02387746
38.
Blanter
,
M. S.
,
Golovin
,
I. S.
,
Neuhauser
,
H.
, and
Sinning
,
H. R.
,
2007
,
Internal Friction in Metallic Materials
,
Springer Verlag
,
Berlin/Heidelberg
.
39.
Casati
,
R.
,
Wei
,
X.
,
Xia
,
K.
,
Dellasega
,
D.
,
Tuissi
,
A.
,
Villa
,
E.
, and
Vedani
,
M.
,
2014
, “
Mechanical and Functional Properties of Ultrafine Grained Al Wires Reinforced by Nano-Al2O3 Particles
,”
Mater. Des.
,
64
, pp.
102
109
. 10.1016/j.matdes.2014.07.052
40.
Schaller
,
R.
,
2003
, “
Metal Matrix Composites, A Smart Choice for High Damping Materials
,”
J. Alloys Compd.
,
355
(
1–2
), pp.
131
135
. 10.1016/S0925-8388(03)00239-1
41.
Liu
,
G.
,
Tang
,
S.
,
Ren
,
W.
, and
Hu
,
J.
,
2014
, “
Effect of Thermal Cycling on The Damping Behavior in Alumina Borate Whisker With and Without Bi2O3 Coating Reinforced Pure Aluminium Composites
,”
Mater. Des.
,
60
, pp.
244
249
. 10.1016/j.matdes.2014.03.034
42.
Liu
,
Y.
,
Yang
,
G.
,
Lu
,
Y.
, and
Yang
,
L.
,
1999
, “
Damping Behavior and Tribological Properties of As-Spray-Deposited High Silicon Alloy ZA27
,”
J. Mater. Process. Technol.
,
87
(
1–3
), pp.
53
58
. 10.1016/S0924-0136(98)00331-8
43.
Arsenault
,
R. J.
, and
Shi
,
N.
,
1986
, “
Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion
,”
Mater. Sci. Eng.
,
81
, pp.
175
187
. 10.1016/0025-5416(86)90261-2
44.
Arsenault
,
R. J.
, and
Fisher
,
R. M.
,
1983
, “
Microstructure of Fiber and Particulate SiC in 6061 Al Composites
,”
Scr. Metall.
,
17
(
1
), pp.
67
71
. 10.1016/0036-9748(83)90072-8
45.
Granato
,
A.
, and
Lucke
,
K.
,
1956
, “
Theory of Mechanical Damping Due To Dislocations
,”
J. Appl. Phys.
,
27
(
6
), pp.
583
593
. 10.1063/1.1722436
46.
Vincent
,
A.
,
Girard
,
C.
,
Lormand
,
G.
,
Zhou
,
X.
, and
Fougeres
,
R.
,
1983
, “
A Dislocation Model for Internal Damping Due to the Thermal Expansion Mismatch Between Matrix and Particles in Micro Heterogeneous Materials
,”
Mater. Sci. Eng. A
,
164
(
1–2
), pp.
327
331
. 10.1016/0921-5093(93)90687-A
47.
Mei
,
Z.
,
Zhu
,
Y. H.
,
Lee
,
W. B.
,
Yue
,
T. M.
, and
Pang
,
G. K. H.
,
2006
, “
Microstructure Investigation of a SiC Whisker Reinforced Eutectoid Zinc Alloy Matrix Composite
,”
Compos., Part A
,
37
(
9
), pp.
1345
1350
. 10.1016/j.compositesa.2005.08.011
48.
Ozden
,
S.
,
Ekici
,
R.
, and
Nair
,
F.
,
2007
, “
Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal–Matrix Composites
,”
Compos., Part A
,
38
(
2
), pp.
484
494
. 10.1016/j.compositesa.2006.02.026
49.
Fadavi Boostani
,
A.
,
Tahamtan
,
S.
,
Jiang
,
Z. Y.
,
Wei
,
D.
,
Yazdani
,
S.
,
Azari Khosroshahi
,
R.
,
Taherzadeh Mousavian
,
R.
,
Xu
,
J.
,
Zhang
,
X.
, and
Gong
,
D.
,
2015
, “
Enhanced Tensile Properties of Aluminium Matrix Composites Reinforced With Graphene Encapsulated SiC Nanoparticles
,”
Compos., Part A
,
68
, pp.
155
163
. 10.1016/j.compositesa.2014.10.010
50.
Urena
,
A.
,
Martınez
,
E. E.
,
Rodrigo
,
P.
, and
Gil
,
L.
,
2004
, “
Oxidation Treatments for SiC Particles Used as Reinforcement in Aluminium Matrix Composites
,”
Compos. Sci. Technol.
,
64
(
12
), pp.
1843
1854
. 10.1016/j.compscitech.2004.01.010
51.
Lloyd
,
D. J.
,
1994
, “
Particle Reinforced Aluminium and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
(
1
), pp.
1
23
. 10.1179/imr.1994.39.1.1
52.
Vijayaraju
,
K.
,
Dwarakadasa
,
E. S.
, and
Panchapagesan
,
T. S.
,
1986
, “
Role of Vacancies in Ductile Fracture of Commercially Pure Aluminium
,”
J. Mater. Sci. Lett.
,
5
(
10
), pp.
1000
1002
. 10.1007/BF01730262
53.
Yadav
,
D.
, and
Bauri
,
R.
,
2011
, “
Processing, Microstructure and Mechanical Properties of Nickel Particles Embedded Aluminium Matrix Composite
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1326
1333
. 10.1016/j.msea.2010.10.035
You do not currently have access to this content.