This paper outlines a microstructure-based model relating gamma prime microstructure and grain size of Ni-base alloys to their creep behavior. The ability of the model to explain creep of multiple superalloys with a single equation and parameter set is demonstrated. The only parameters that are changed from alloy to alloy are related to the gamma prime characteristics and grain size. This model also allows prediction of creep performance as a function of heat treatment and explains some apparently contradictory data from the literature.

References

1.
Dyson
,
B. F.
,
2009
, “
Microstructure Based Creep Constitutive Model for Precipitation Strengthened Alloys: Theory and Application
,”
Mater. Sci. Technol.
,
25
(
2
), pp.
213
220
.
2.
Basoalto
,
H.
,
Sondhi
,
S. K.
,
Dyson
,
B. F.
, and
McLean
,
M.
,
2004
, “
A Generic Microstructure-Explicit Model of Creep in Nickel-Base Superalloys
,”
Superalloys
,
K. A.
Green
,
T. M.
Pollock
,
J.
Harada
,
T. E.
Howson
,
R. C.
Reed
,
J. J.
Schirra
, and
S.
Walston
, eds.,
TMS
,
Warrendale, PA
, pp.
897
906
.
3.
Coakley
,
J.
,
Dye
,
D.
, and
Basoalto
,
H.
,
2011
, “
Creep and Creep Modeling of a Multimodal Nickel-Base Superalloy
,”
Acta Mater.
,
59
(
3
), pp.
854
863
.
4.
Ma
,
A.
,
Dye
,
D.
, and
Reed
,
R. C.
,
2008
, “
A Model for the Creep Deformation Behavior of Single Crystal Superalloy CMSX-4
,”
Acta Mater.
,
56
(
8
), pp.
1657
1670
.
5.
Zhu
,
Z.
,
Basoalto
,
H.
,
Warnken
,
N.
, and
Reed
,
R. C.
,
2012
, “
A Model for Creep Deformation of Nickel-Based Single Crystal Superalloys
,”
Acta Mater.
,
60
(
12
), pp.
4888
4900
.
6.
Karthikeyan
,
S.
,
Unocic
,
R. R.
,
Sarosi
,
P. M.
,
Viswanathan
,
G. B.
, and
Whitis
,
D. D.
,
2006
, “
Modeling Microtwinning During Creep in Ni-Based Superalloys
,”
Scr. Mater.
,
54
(
6
), pp.
1157
1162
.
7.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
8.
Brown
,
L. M.
, and
Stobbs
,
W. M.
,
1971
, “
The Work Hardening of Copper-Silica—Part I: A Model Based on Internal Stresses With No Plastic Relaxation
,”
Philos. Mag.
,
23
(
185
), pp.
1185
1189
.
9.
Groh
,
S.
,
Devincre
,
B.
,
Kubin
,
L. P.
,
Roos
,
A.
,
Feyel
,
F.
, and
Chaboche
,
J.-L.
,
2005
, “
Size Effects in Metal Matrix Composites
,”
Mater. Sci. Eng.
,
400–401
, pp.
279
282
.
10.
Pollock
,
T. M.
, and
Argon
,
A.
,
1992
, “
Creep Resistance of CMSX-3 Nickel-Base Superalloy Single Crystals
,”
Acta Metall.
,
40
(
1
), pp.
1
30
.
11.
Oruganti
,
R.
,
2012
, “
A New Approach to Dislocation Creep
,”
Acta Mater.
,
60
(
4
), pp.
1695
1702
.
12.
Daehn
,
G. S.
,
Brehm
,
H.
,
Lee
,
H.
, and
Lim
,
B. S.
,
2004
, “
A Model for Creep Based on Microstructural Length Scale Evolution
,”
Mater. Sci. Eng. A
,
387–389
, pp.
576
584
.
13.
Wadsworth
,
J.
,
Ruano
,
A.
, and
Sherby
,
D.
,
1999
, “
Deformation by Grain Boundary Sliding and Slip Creep Versus Diffusional Creep
,”
Creep Behavior of Advanced Materials for the 21st Century
, Rajiv S. Mishra, Amiya K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, pp. 425–439.
14.
Stevens
,
R. A.
, and
Flewitt
,
P. E. J.
,
1979
, “
The Effects of γ′ Precipitate Coarsening During Isothermal Aging and Creep of the Nickel-Base Superalloy IN738
,”
Mater. Sci. Eng.
,
37
(
3
), pp.
237
247
.
15.
Dyson
,
B. F.
, and
McLean
,
M.
,
1983
, “
Particle Coarsening and Tertiary Creep
,”
Acta Metall.
,
31
(
1
), pp.
17
27
.
You do not currently have access to this content.