This paper outlines a microstructure-based model relating gamma prime microstructure and grain size of Ni-base alloys to their creep behavior. The ability of the model to explain creep of multiple superalloys with a single equation and parameter set is demonstrated. The only parameters that are changed from alloy to alloy are related to the gamma prime characteristics and grain size. This model also allows prediction of creep performance as a function of heat treatment and explains some apparently contradictory data from the literature.
Issue Section:
Research Papers
References
1.
Dyson
, B. F.
, 2009
, “Microstructure Based Creep Constitutive Model for Precipitation Strengthened Alloys: Theory and Application
,” Mater. Sci. Technol.
, 25
(2
), pp. 213
–220
.2.
Basoalto
, H.
, Sondhi
, S. K.
, Dyson
, B. F.
, and McLean
, M.
, 2004
, “A Generic Microstructure-Explicit Model of Creep in Nickel-Base Superalloys
,” Superalloys
, K. A.
Green
, T. M.
Pollock
, J.
Harada
, T. E.
Howson
, R. C.
Reed
, J. J.
Schirra
, and S.
Walston
, eds., TMS
, Warrendale, PA
, pp. 897
–906
.3.
Coakley
, J.
, Dye
, D.
, and Basoalto
, H.
, 2011
, “Creep and Creep Modeling of a Multimodal Nickel-Base Superalloy
,” Acta Mater.
, 59
(3
), pp. 854
–863
.4.
Ma
, A.
, Dye
, D.
, and Reed
, R. C.
, 2008
, “A Model for the Creep Deformation Behavior of Single Crystal Superalloy CMSX-4
,” Acta Mater.
, 56
(8
), pp. 1657
–1670
.5.
Zhu
, Z.
, Basoalto
, H.
, Warnken
, N.
, and Reed
, R. C.
, 2012
, “A Model for Creep Deformation of Nickel-Based Single Crystal Superalloys
,” Acta Mater.
, 60
(12
), pp. 4888
–4900
.6.
Karthikeyan
, S.
, Unocic
, R. R.
, Sarosi
, P. M.
, Viswanathan
, G. B.
, and Whitis
, D. D.
, 2006
, “Modeling Microtwinning During Creep in Ni-Based Superalloys
,” Scr. Mater.
, 54
(6
), pp. 1157
–1162
.7.
Ashby
, M. F.
, 1970
, “The Deformation of Plastically Non-Homogeneous Materials
,” Philos. Mag.
, 21
(170
), pp. 399
–424
.8.
Brown
, L. M.
, and Stobbs
, W. M.
, 1971
, “The Work Hardening of Copper-Silica—Part I: A Model Based on Internal Stresses With No Plastic Relaxation
,” Philos. Mag.
, 23
(185
), pp. 1185
–1189
.9.
Groh
, S.
, Devincre
, B.
, Kubin
, L. P.
, Roos
, A.
, Feyel
, F.
, and Chaboche
, J.-L.
, 2005
, “Size Effects in Metal Matrix Composites
,” Mater. Sci. Eng.
, 400–401
, pp. 279
–282
.10.
Pollock
, T. M.
, and Argon
, A.
, 1992
, “Creep Resistance of CMSX-3 Nickel-Base Superalloy Single Crystals
,” Acta Metall.
, 40
(1
), pp. 1
–30
.11.
Oruganti
, R.
, 2012
, “A New Approach to Dislocation Creep
,” Acta Mater.
, 60
(4
), pp. 1695
–1702
.12.
Daehn
, G. S.
, Brehm
, H.
, Lee
, H.
, and Lim
, B. S.
, 2004
, “A Model for Creep Based on Microstructural Length Scale Evolution
,” Mater. Sci. Eng. A
, 387–389
, pp. 576
–584
.13.
Wadsworth
, J.
, Ruano
, A.
, and Sherby
, D.
, 1999
, “Deformation by Grain Boundary Sliding and Slip Creep Versus Diffusional Creep
,” Creep Behavior of Advanced Materials for the 21st Century
, Rajiv S. Mishra, Amiya K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, pp. 425–439.14.
Stevens
, R. A.
, and Flewitt
, P. E. J.
, 1979
, “The Effects of γ′ Precipitate Coarsening During Isothermal Aging and Creep of the Nickel-Base Superalloy IN738
,” Mater. Sci. Eng.
, 37
(3
), pp. 237
–247
.15.
Dyson
, B. F.
, and McLean
, M.
, 1983
, “Particle Coarsening and Tertiary Creep
,” Acta Metall.
, 31
(1
), pp. 17
–27
.Copyright © 2019 by ASME
You do not currently have access to this content.