Cavitation-induced deformation mechanisms in neat semicrystalline polymers, i.e., crazing, and in the derived composites, i.e., particle-matrix debonding, are generally activated during the transition between viscoelastic and viscoplastic deformation stages. However, little quantitative information about the void evolution with the drawing level is to date available in the literature. The objective of this work is to quantify cavitation mechanisms in neat and calcium carbonate-filled high-density polyethylene (HDPE) subjected to tensile deformation. Attention was first focused on the properties of the materials that were assessed by means of a thermogravimetric analyzer, a differential scanning calorimeter, a scanning electron microscope (SEM), and a dynamic mechanical analyzer. In a second step, macroscopic aspects of cavitation were studied by quantifying volume variation of the materials subjected to tension using an accurate optical extensometer (VidéoTraction). Attention was then turned to microscopic features of cavitation through a careful quantification of void density and shape factor by means of a method coupling a SEM with an image analysis procedure. At the two scales of interest, the results demonstrate that (i) the void density generated by crazing in neat HDPE or particle-matrix debonding in the composites gradually increases with the deformation state, (ii) void density induced by debonding is higher than that generated by crazing, and (iii) decreasing particles size causes an increase of void density. We also estimated the void shape factor, that is, ratio between the height and the width of the cavities. In all the studied materials, this parameter starts from a value that is below 1 and increases by a factor of 2 with increasing deformation. Moreover, in the case of the composites, one notes a higher void shape factor compared with the neat material, and particle size does not influence this parameter. The results provided by this paper can be the basis of a physically based model predicting cavitation mechanisms in semicrystalline polymers.

References

1.
Butler
,
M. F.
,
Donald
,
A. M.
, and
Ryan
,
A. J.
, 1998, “
Time Resolved Simultaneous Small- and Wide-Angle X-ray Scattering During Polyethylene Deformation—II. Cold Drawing of Linear Polyethylene
,”
Polymer
,
39
(
1
), pp.
39
52
.
2.
Pawlak
,
A.
, 2007, “
Cavitation During Tensile Deformation of High-Density Polyethylene
,”
Polymer
,
48
(
5
), pp.
1397
1409
.
3.
Castagnet
,
S.
,
Gacougnolle
,
J. L.
, and
Dang
,
P.
, 2000, “
Sensitivity of Damage to Microstructure Evolution Occurring During Long-Term High-Temperature Annealing in a Semi-Crystalline Polymer
,”
Mater. Sci. Eng., A
,
A276
(
1–2
), pp.
152
159
.
4.
Addiego
,
F.
,
Dahoun
,
A.
,
G’Sell
,
C.
, and
Hiver
,
J. M.
, 2006, “
Characterization of Plastic Damage at Large Strain Under Uniaxial Tension in High-Density Polyethylene
,”
Polymer
,
47
(
12
), pp.
4387
4399
.
5.
Gaucher-Miri
,
V.
,
Depecker
,
C.
, and
Séguéla
,
R.
, 1997, “
Reversible Strain-Induced Order in the Amorphous Phase of a Low-Density Ethylene/butene Copolymer
,”
J. Polym. Sci.
,
35
(
13
), pp.
2151
2159
.
6.
Pukanszky
,
B.
,
Van Es
,
M.
,
Maurer
,
F. H. J.
, and
Voros
,
G.
, 1994, “
Micromechanical Deformations in Particulate Filled Thermoplastics: Volume Strain Measurements
,”
J. Mater. Sci.
,
29
(
9
), pp.
2350
2358
.
7.
Lazzeri
,
A.
,
Thio
,
Y. S.
, and
Cohen
,
R. E.
, 2004, “
Volume Strain Measurements on CaCO3/Polypropylene Particulate Composites: The Effect of Particle Size
,”
J. Appl. Polym. Sci.
,
91
(
2
), pp.
925
935
.
8.
Sinien
,
L.
,
Lin
,
Y.
,
Xiaoguang
,
Z.
, and
Zongneng
,
Q.
, 1992, “
Microdamage and Interfacial Adhesion in Glass Bead-Filled High-Density Polyethylene
,”
J. Mater. Sci.
,
27
(
17
), pp.
4633
4638
.
9.
Lazzeri
,
A.
,
Zebarjad
,
S. M.
,
Pracella
,
M.
,
Cavalier
,
K.
, and
Rosa
,
R.
, 2005, “
Filler Toughening of Plastics. Part 1—The Effect of Surface Interactions on Physico-Mechanical Properties and Rheological Behaviour of Ultrafine CaCO3/HDPE Nanocomposites
,”
Polymer
,
46
(
3
), pp.
827
844
.
10.
Pawlak
,
A.
, and
Galeski
,
A.
, 2008, “
Cavitation During Tensile Deformation of Polypropylene
,”
Macromolecules
,
41
(
8
), pp.
2839
2851
.
11.
Zuiderduin
,
W. C. J.
,
Westzaan
,
C.
,
Huetink
,
J.
, and
Gaymans
,
R. J.
, 2003, “
Toughening of Polypropylene With Calcium Carbonate Particles
,”
Polymer
,
44
(
1
), pp.
261
275
.
12.
Wu
,
S.
, 1988, “
A Generalized Criterion for Rubber Toughening: The Critical Matrix Ligament Thickness
,”
J. Appl. Polym. Sci.
,
35
(
2
), pp.
549
561
.
13.
Bartczak
,
Z.
,
Argon
,
A. S.
,
Cohen
,
R. E.
, and
Weinberg
,
M.
, 1999, “
Toughness Mechanism in Semi-Crystalline Blends: II. High-Density Polyethylene Toughened With Calcium Carbonate Filler Particles
,”
Polymer
,
40
(
9
), pp.
2347
2365
.
14.
Brusselle-Dupend
,
N.
, and
Cangemi
,
L.
, 2008, “
A Two-Phase Model for the Mechanical Behaviour of Semicrystalline Polymers. Part II—Modelling of the Time-Dependent Mechanical Behaviour of an Isotropic and a Highly Oriented HDPE Grade
,”
Mech. Mater.
,
40
(
9
), pp.
761
770
.
15.
Patlazhan
,
S. A.
,
Shamaev
,
M.
,
Rémond
,
Y.
,
Hizoum
,
K.
, and
Dubovitskii
,
V.
, 2008, “
1D and 2D Modeling of Structure Sensitive Deformation Behavior of Semicrystalline Polymers Below the Yield Point
,”
Proc. Third International Conference on Polymer Behavior
,
S.
Ahzi
,
Y.
Rémond
,
S.
Patlazhan
,
M.
Khaleel
, eds.,
Institute of Mechanics of Fluids and Solids, Louis Pasteur University
,
Strasbourg, France
, pp.
48
.
16.
Temimi-Maaref
,
N.
,
Burr
,
A.
, and
Billon
,
N.
, 2008, “
Damaging Processes in Polypropylene Compound: Experiment and Modeling
,”
Polym. Sci., Ser. A
,
50
(
5
), pp.
558
567
.
17.
Wunderlich
,
B.
, 1976,
Macromolecular Physics. Volume 2: Crystal Nucleation, Growth, Annealing
,
Academic
,
New York
.
18.
Ghijsels
,
A.
, and
Waals
,
F.
, 1980, “
Differential Scanning Calorimetry: A Powerful Tool for the Characterization of Thermoplastics
,”
Polym. Test.
,
1
(
2
), pp.
149
160
.
19.
Brough
,
I.
,
Haward
,
R. N.
,
Healey
,
G.
, and
Wood
,
A.
, 2004, “
Scanning Electron Micrographs of High Density Polyethylene Fracture Surfaces
,”
Polymer
,
45
(
10
), pp.
3115
3129
.
20.
Andersen
,
P. G.
, 2009, “
Mixing Practices in Co-Rotating Twin Screw Extruders
,”
Mixing and Compounding of Polymers
, 2nd ed.,
I.
Manas-Zloczower
, ed.,
Carl Hanser Verlag, Munich
,
Germany
, Chap. 25
21.
Zhang
,
X. X.
,
Yu
,
Z. Z.
,
Xie
,
X. L.
, and
Mai
,
Y. W.
, 2004, “
Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites With Nonionic Modifier
,”
Polymer
,
45
(
17
), pp.
5985
5994
.
22.
Thio
,
Y. S.
,
Argon
,
A. S.
,
Cohen
,
R. E.
, and
Weinberg
,
M.
, 2002, “
Toughening of Isotactic Polypropylene With CaCO3 Particles
,”
Polymer
,
43
(
13
), pp.
3661
3674
.
23.
Ji
,
X. L.
,
Jing
,
K. J.
,
Jiang
,
W.
, and
Jiang
,
B. Z.
, 2002, “
Tensile Modulus of Polymer Nanocomposites
,”
Polym. Eng. Sci.
,
42
(
5
), pp.
983
993
.
24.
Kausch
,
H. H.
, 1978,
Polymer Fracture
,
Springer-Verlag
,
Berlin, Germany
.
25.
Addiego
,
F.
,
Dahoun
,
A.
,
G’Sell
,
C.
, and
Hiver
,
J. M.
, 2006, “
Volume Variation Process of High-Density Polyethylene During Tensile and Creep Tests
,”
Oil Gas Sci. Technol.
,
61
(
6
), pp.
715
724
.
26.
Delesse
,
A.
, 1848, “
Procédé mécanique: Pour déterminer la composition des roches
,”
Ann. Mines
,
13
, pp.
379
388
.
27.
Hilliard
,
J. E.
, 1968,
Quantitative Microscopy, Part 3: Measurement of Volume in Volume
,
MacGraw-Hill
,
New York
.
You do not currently have access to this content.