The peculiarities of viscoelastic behavior of high-density polyethylene (HDPE) subjected to the uniaxial cyclic tensions and retractions below the yield point are studied. This required using three different deformation programs including (i) the successive increase in strain maximum of each cycle, (ii) the controlled upper and lower stress boundaries, and (iii) the fixed strain at the backtracking points. The experimental data are analyzed in a framework of the modified structure-sensitive model (Oshmyan et al., 2006, “Principles of Structural–Mechanical Modeling of Polymers and Composites,” Polym. Sci. Ser. A, 48, pp. 1004–1013) of semicrystalline polymers. It is supposed that increase in the interlamellar nanovoid volume fraction results in speeding-up the plastic flow rate while decreasing cavitation rate. Consequently, a proper fitting of the stress–strain cyclic diagrams is obtained for the applied deformation programs within the common set of model parameters. This makes it possible to reveal evolution of nanovoid volume fraction in HDPE during cyclic deformations.

References

1.
Schrauwen
,
B. A. G.
,
Janssen
,
R. P. M.
,
Govaert
,
L. E.
, and
Meijer
,
H. E. H.
, 2004, “
Intrinsic Deformation Behavior of Semicrystalline Polymers
,”
Macromolecules
,
37
(
16
) pp.
6069
6078
.
2.
Bergstrom
,
J. S.
, and
Hilbert
,
L. B.
, 2005, “
A Constitutive Model for Predicting the Large Deformation Thermomechanical Behavior of Fluoropolymers
,”
Mech. Mater.
,
37
(
8
) pp.
899
913
.
3.
Yakimets
,
I.
,
Lai
,
D.
, and
Guigon
,
M.
, 2007, “
Model to Predict the Viscoelastic Response of a Semi-Crystalline Polymer Under Complex Cyclic Mechanical Loading and Unloading Conditions
,”
Mech. Time-Depend. Mater.
,
11
(
1
) pp.
47
60
.
4.
Drozdov
,
A. D.
, and
De Christiansen
,
J. C.
, 2007, “
Cyclic Viscoplasticity of High-Density Polyethylene: Experiments and Modeling
,”
Comput. Mater. Sci.
,
39
(
2
) pp.
465
480
.
5.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
, 2005, “
An Assessment of Nonlinearly Viscoelastic Constitutive Models for Cyclic Loading: The Effect of a General Loading/Unloading Rule
,”
Mech. Time-Depend. Mater.
,
9
(
4
) pp.
79
98
.
6.
Castagnet
,
S.
, 2009, “
High-Temperature Mechanical Behavior of Semi-Crystalline Polymers and Relationship to a Rubber-Like “Relaxed” State
,”
Mech. Mater.
,
41
(
2
) pp.
75
86
.
7.
Hiss
,
R.
,
Hobeika
,
S.
,
Lynn
,
C.
, and
Strobl
,
G.
, 1999, “
Network Stretching, Slip Processes, and Fragmentation of Crystallites During Uniaxial Drawing of Polyethylene and Related Copolymers. A Comparative Study
,”
Macromolecules
,
32
(
13
) pp.
4390
4403
.
8.
Fu
,
Q.
,
Men
,
Y.
, and
Strobl
,
G.
, 2003, “
A Molar Mass Induced Transition in the Yielding Properties of Linear Polyethylene
,”
Polymer
,
44
(
6
) pp.
1941
1947
.
9.
Hong
,
K.
, and
Strobl
,
G.
, 2006, “
Network Stretching During Tensile Drawing of Polyethylene: A Study Using X-Ray Scattering and Microscopy
,”
Macromolecules
,
39
(
1
) pp.
268
273
.
10.
Na
,
B.
,
Zhang
,
Q.
,
Fu
,
Q.
,
Men
,
Y.
,
Hong
,
K.
, and
Strobl
,
G.
, 2006, “
Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene
,”
Macromolecules
,
39
(
7
) pp.
2584
2591
.
11.
De Rosa
,
C.
, and
Auriemma
,
F.
, 2006, “
Structural−Mechanical Phase Diagram of Isotactic Polypropylene
,”
J. Am. Chem. Soc.
,
128
(
34
) pp.
11024
11025
.
12.
Bartczak
,
Z.
, 2005, “
Effect of Chain Entanglements on Plastic Deformation Behavior of Linear Polyethylene
,”
Macromolecules
,
38
(
18
) pp.
7702
7713
.
13.
G’Sell
,
C.
,
Hivier
,
J. M.
, and
Dahoun
,
A.
, 2002, “
Experimental Characterization of Deformation Damage in Solid Polymers Under Tension, and Its Interrelation With Necking
,”
Int. J. Solids Struct.
,
39
(
13–14
) pp.
3857
3872
.
14.
Addiego
,
F.
,
Dahoun
,
A.
,
G’Sell
,
C.
, and
Hivier
,
J. M.
, 2006, “
Characterization of Volume Strain at Large Deformation Under Uniaxial Tension in High-Density Polyethylene
,”
Polymer
,
47
(
12
) pp.
4387
4399
.
15.
Pawlak
,
A.
, and
Galeski
,
A.
, 2005, “
Plastic Deformation of Crystalline Polymers: The Role of Cavitation and Crystal Plasticity
,”
Macromolecules
,
38
(
23
) pp.
9688
9697
.
16.
Pawlak
,
A.
, 2007, “
Cavitation During Tensile Deformation of High-Density Polyethylene
,”
Polymer
,
48
(
5
) pp.
1397
1409
.
17.
Pawlak
,
A.
, and
Galeski
,
A.
, 2008, “
Cavitation During Tensile Deformation of Polypropylene
,”
Macromolecules
,
41
(
8
) pp.
2839
2851
.
18.
Oshmyan
,
V.
,
Patlazhan
,
S.
, and
Rémond
,
Y.
, 2006. “
Principles of Structural–Mechanical Modeling of Polymers and Composites
,”
Polym. Sci., Ser. A
,
48
(
9
) pp.
1004
1013
.
19.
Patlazhan
,
S.
,
Hizoum
,
K.
, and
Rémond
,
Y.
, 2008, “
Stress–Strain Behavior of High-Density Polyethylene Below the Yield Point: Effect of Unloading Rate
,”
Polym. Sci. Ser. A
,
50
(
5
) pp.
507
513
.
20.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
, 1999, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London A
,
455
(1988) pp.
2861
2877
.
21.
Oshmyan
,
V.
,
Patlazhan
,
S.
, and
Rémond
,
Y.
, 2004, “
Simulation of Small-Strain Deformations of Semi-Crystalline Polymer: Coupling of Structural Transformations With Stress-Strain Response
,”
J. Mater. Sci.
,
39
(
11
) pp.
3577
3586
.
22.
Duffo
,
P.
,
Monasse
,
B.
,
Hauden
,
J. M.
,
G’Sell
,
C.
, and
Dahoun
,
A.
, 1995, “
Rheology of Polypropylene in the Solid State
,”
J. Mater. Sci.
,
30
(
3
) pp.
701
711
.
23.
Meyer
,
R. W.
, and
Pruitt
,
L. A.
, 2001, “
The Effect of Cyclic True Strain on the Morphology, Structure, and Relaxation Behavior of Ultra High Molecular Weight Polyethylene
,”
Polymer
,
42
(
12
) pp.
5293
5306
.
You do not currently have access to this content.