This paper presents results of a computational study focused on examining the role of manufacturing-induced voids in the initiation and growth of damage at the microstructural level in polymer matrix composites loaded in tension normal to fibers. The polymer deformation is described by an improved macromolecular constitutive model accounting for strain-rate-, pressure-, and temperature-sensitive yielding, isotropic hardening before peak yield, intrinsic postyield softening, and rapid anisotropic hardening at large strains. A new craze model that accounts for craze initiation, growth, and breakdown mechanisms is employed. An energy-based criterion is used for cavitation induced cracking that can lead to fiber/matrix debonding. The role of voids is clarified by conducting a comparative study of unit cells with and without voids. The effects of strain rate and temperature are investigated by a parametric study. The overall composite stress-strain response is also depicted to indicate manifestation of microlevel failure on macroscopic behavior.

1.
Patel
,
N.
,
Rohatgi
,
V.
, and
Lee
,
L. J.
, 1995, “
Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Unidirectional Stitched Fiberglass Mat
,”
Polym. Eng. Sci.
0032-3888,
30
(
6
), pp.
2485
2504
.
2.
Judd
,
N. C. W.
, and
Wright
,
W. W.
, 1978, “
Voids and Their Effects on the Mechanical Properties of Composites; An Appraisal
,”
SAMPE J.
0091-1062,
10
, pp.
10
14
.
3.
Costa
,
M. L.
,
Almeida
,
S. F. M.
, and
Rezende
,
M. C.
, 2001, “
The Influence of Porosity on the Interlaminar Shear Strength of Carbon/Epoxy and Carbon/Bismaleimide Fabric Laminates
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
2101
2108
.
4.
Nilsson
,
G.
,
Fernberg
,
S. P.
, and
Berglund
,
L. A.
, 2002, “
Strain Field Inhomogeneities and Stiffness Changes in GMT Containing Voids
,”
Composites, Part A
1359-835X,
33
(
1
), pp.
75
85
.
5.
Ghiorse
,
S. R.
, 1993, “
Effect of Void Content on the Mechanical Properties of Carbon/Epoxy Laminates
,”
SAMPE Q.
0036-0821,
24
(
2
), pp.
54
59
.
6.
Huang
,
H.
, and
Talreja
,
R.
, 2005, “
Effects of Void Geometry on Elastic Properties of Unidirectional Fiber Reinforced Composites
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1964
1981
.
7.
Jang
,
B. Z.
,
Uhlmann
,
D. R.
, and
Vandersande
,
J. B.
, 1985, “
Rubber-Toughening in Polypropylene
,”
J. Appl. Polym. Sci.
0021-8995,
30
(
6
), pp.
2485
2504
.
8.
Sato
,
N.
,
Kurauchi
,
T.
, and
Sato
,
S.
, 1991, “
Microfailure Behavior of Randomly Dispersed Short Fibre Reinforced Thermoplastic Composites Obtained by Direct SEM Observation
,”
J. Mater. Sci.
0022-2461,
26
, pp.
3891
3898
.
9.
Varna
,
J.
,
Joffe
,
R.
,
Berglund
,
L.
, and
Lundstrom
,
T. S.
, 1995, “
Effect of Voids on Failure Mechanisms in RTM Laminates
,”
Compos. Sci. Technol.
0266-3538,
53
(
2
), pp.
241
249
.
10.
Wood
,
C. A.
, and
Bradley
,
W. L.
, 1997, “
Determination of the Effect of Seawater on the Interfacial Strength of an Interlayer e-Glass/Graphite/Epoxy Composite by in Situ Observation of Transverse Cracking in an Environmental SEM
,”
Compos. Sci. Technol.
0266-3538,
57
, pp.
1033
1043
.
11.
Asp
,
L. E.
,
Berglund
,
L. A.
, and
Talreja
,
R.
, 1996, “
A Criterion for Crack Initiation in Glassy Polymers Subjected to a Composite-Like Stress State
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
1291
1301
.
12.
Asp
,
L. E.
,
Berglund
,
L. A.
, and
Talreja
,
R.
, 1996, “
Prediction of Matrix-Initiated Transverse Failure in Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
1089
1097
.
13.
Harper
,
B. D.
,
Staab
,
G. H.
, and
Chen
,
R. S.
, 1987, “
A Note on the Effects of Voids Upon the Hygral and Mechanical Properties of AS4/3502 Graphite/Epoxy
,”
J. Compos. Mater.
0021-9983,
21
, pp.
280
289
.
14.
Bowles
,
K. J.
, and
Frimpong
,
S.
, 1992, “
Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites
,”
J. Compos. Mater.
0021-9983,
26
, pp.
1487
1509
.
15.
Berryman
,
J. G.
, 1994, “
Role of Porosity in Estimates of Composite Elastic-Constants
,”
ASME J. Energy Resour. Technol.
0195-0738,
116
(
2
), pp.
87
96
.
16.
Wisnom
,
M. R.
,
Reynolds
,
T.
, and
Gwilliam
,
N.
, 1996, “
Reduction in Interlaminar Shear Strength by Discrete and Distributed Voids
,”
Compos. Sci. Technol.
0266-3538,
56
, pp.
93
101
.
17.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier Science
,
Amsterdam
.
18.
Needleman
,
A.
, 1989, “
Dynamic Shear Band Development in Plane Strain
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
1
9
.
19.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
, 1976, “
Efficient Large Scale Non-Linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
10
, pp.
579
596
.
20.
Krieg
,
R. O.
, and
Key
,
S. W.
, 1973, “
Transient Shell Response by Numerical Time Integration
,”
Int. J. Numer. Methods Eng.
0029-5981,
7
, pp.
273
286
.
21.
Argon
,
A. S.
, 1973, “
A Theory for the Low Temperature Plastic Deformation of Glassy Polymers
,”
Philos. Mag.
0031-8086,
15
, pp.
28
39
.
22.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
, 1988, “
Large Inelastic Deformation of Glassy Polymers, Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
0167-6636,
7
, pp.
15
33
.
23.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for Large Stretch Behaviour of Rubber Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
24.
Wu
,
P. D.
, and
Van der Giessen
,
E.
, 1993, “
On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
427
456
.
25.
Wu
,
P. D.
, and
Van der Giessen
,
E.
, 1996, “
Computational Aspects of Localized Deformations in Amorphous Glassy Polymers
,”
Eur. J. Mech. A/Solids
0997-7538,
15
, pp.
799
823
.
26.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
, 1984, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
0045-7949,
18
, pp.
875
887
.
27.
Chowdhury
,
K. A.
,
Benzerga
,
A. A.
, and
Talreja
,
R.
, 2007, “
A Computational Framework for Analyzing the Dynamic Response of Glassy Polymers
,” unpublished.
28.
Argon
,
A. S.
,
Hannoosh
,
J. G.
, and
Salama
,
M. M.
, 1977, “
Initiation and Growth of Crazes in Glassy Polymers
,”
Fracture
,
1
, pp.
445
470
.
29.
Argon
,
A. S.
,
Cohen
,
R. E.
, and
Mower
,
T. M.
, 1994, “
Mechanisms of Toughening Brittle Polymers
,”
Metall. Mater. Trans. A
1073-5623,
176
(
1–2
), pp.
79
90
.
30.
Chowdhury
,
K. A.
,
Benzerga
,
A. A.
, and
Talreja
,
R.
, 2007, “
A Model for Polymer Fracture by Craze Initiation to Breakdown
,” unpublished.
31.
Chowdhury
,
K. A.
, 2007, “
Damage Initiation, Progression and Failure of Polymer Based Composites Due to Manufacturing Induced Defects
,” Ph.D. thesis, Texas A & M University, College Station, TX.
32.
Sternstein
,
S. S.
, and
Meyers
,
F. A.
, 1973, “
Yielding of Glassy Polymers in the Second Quadrant of Principal Stress Space
,”
J. Macromol. Sci., Phys.
0022-2348,
B8
, pp.
539
571
.
33.
Gearing
,
B. P.
, and
Anand
,
L.
, 2004, “
On Modeling the Deformation and Fracture Response of Glassy Polymers Due to Shear Yielding and Crazing
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3125
3150
.
34.
Chowdhury
,
K. A.
,
Benzerga
,
A. A.
, and
Talreja
,
R.
, 2008, “
An Analysis of Impact-Induced Deformation and Fracture Modes in Amorphous Glassy Polymers
,”
Eng. Fract. Mech.
0013-7944, published online: 10.1016/j.engfracmech.2007.08.007.
35.
Oxborough
,
R. J.
, and
Bowden
,
P. B.
, 1973, “
A General Critical-Strain Criterion for Crazing in Amorphous Polymers
,”
Philos. Mag.
0031-8086,
28
, pp.
547
559
.
36.
The Physics of Glassy Polymer
, 1973,
R. N.
Haward
, ed.,
Applied Science
,
London
.
37.
Benzerga
,
A. A.
, 2002, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1331
1362
.
38.
Tvergaard
,
V.
, 1981, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
0376-9429,
17
, pp.
389
407
.
39.
Needleman
,
A.
, and
Tvergaard
,
V.
, 1983, “
Finite Element Analysis of Localization in Plasticity
,”
Finite Elements-Special Problems in Solid Mechanics
,
J. T.
Oden
and
G. F.
Carey
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, Vol.
5
, pp.
94
157
.
40.
Gilbert
,
J. L.
,
Ney
,
D. S.
, and
Lautenschlager
,
E. P.
, 1995, “
Self-Reinforced Composite Poly(Methylmethacrylate): Static and Fatigue Properties
,”
Biomaterials
0142-9612,
16
, pp.
1043
1055
.
41.
Haggenmueller
,
R.
,
Gommans
,
H. H.
,
Rinzler
,
A. G.
, and
Fischer
,
J. E.
, 2000, “
Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods
,”
Chem. Phys. Lett.
0009-2614,
330
, pp.
219
225
.
42.
Ash
,
B. J.
,
Siegel
,
R. W.
, and
Schadler
,
L. S.
, 2004, “
Mechanical Behavior of Alumina/Poly(Methyl Methacrylate) Nanocomposites
,”
Macromolecules
0024-9297,
37
, pp.
1358
1369
.
43.
Saha
,
N.
,
Banerjee
,
A. N.
, and
Mitra
,
B. C.
, 1996, “
Dynamic Mechanical Study on Unidirectional Polyethylene Fibers-PMMA and Glass Fibers-PMMA Composite Laminates
,”
J. Appl. Polym. Sci.
0021-8995,
60
, pp.
657
662
.
44.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Quintus-Bosz
,
H.
, 1993, “
Effects of Initial Anisotropy on the Finite Strain Deformation Behavior of Glassy Polymers
,”
Int. J. Plast.
0749-6419,
9
, pp.
783
811
.
45.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
, 1995, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
0167-6636,
19
, pp.
193
212
.
46.
Gilat
,
A.
,
Goldberg
,
R. K.
, and
Roberts
,
G. D.
, 2002, “
Experimental Study of Strain-Rate-Dependent Behavior of Carbon/Epoxy Composite
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1469
1476
.
You do not currently have access to this content.