To investigate the constitutive relation of a plant tissue regarded as a deformable continuum, stress and strain must be determined experimentally for the same configurations. Such experiments are hindered by the inherent theoretical complexity of continuum mechanics, and by the technical difficulties of effecting external stress loads or body forces on the tissue without invasion, especially on a small scale. An understanding of appropriate mechanical problems and their solutions can help the experimentalist overcome these difficulties to a certain extent. Based on recent work on fiber-reinforced material, we formulate a constitutive theory for the root of different angiosperm species and suggest a set of loading conditions to determine the parameter values in a specific tissue sample. The loading conditions are formulated with a view toward experimental realization in vivo or with minimal invasion. For each loading condition, we formulate the corresponding mechanical problem and show how to obtain the values of the elastic parameters from known solutions. This framework can be used to analyze the interplay between mechanical and metabolic behavior in plants and to study the elastodynamics of plant tissues.

1.
Bengough
,
A. G.
,
Bransby
,
M. F.
,
Hans
,
J.
,
McKenna
,
S. J.
,
Roberts
,
T. J.
, and
Valentine
,
T. A.
, 2006, “
Root Responses to Soil Physical Conditions; Growth Dynamics From Field to Cell
,”
J. Exp. Bot.
0022-0957,
57
(
2
), pp.
437
447
.
2.
Hanbury
,
C. D.
, and
Atwell
,
B. J.
, 2005, “
Growth Dynamics of Mechnially Impeded Lupin Roots: Does Altered Morphology Induce Hypoxia?
,”
Ann. Bot. (London)
0305-7364,
96
(
5
), pp.
913
924
.
3.
Hamman
,
K. D.
,
Williamson
,
R. L.
,
Steffer
,
E. D.
,
Wright
,
C. T.
,
Hess
,
J. R.
, and
Profogle
,
P. A.
, 2005, “
Structural Analysis of Wheat Steams
,”
Appl. Biochem. Biotechnol.
0273-2289,
121-124
, pp.
71
80
.
4.
Spatz
,
H.-C.
, and
Emanns
,
A.
, 2004, “
The Mechnical Role of the Endodermis in Equisetum Plant Stems
,”
Am. J. Bot.
0002-9122,
91
, pp.
1936
1938
.
5.
Spatz
,
H.-C.
, and
Brüchert
,
F.
, 2000, “
Basic Biomechanics of Self-Supporting Plants: Wind Loads and Gravitational Loads on a Norway Spruce Tree
,”
Forest Ecol. Manage.
0378-1127,
135
, pp.
33
44
.
6.
Niklas
,
K. J.
, 1992,
Plant Biomechanics: An Engineering Approach to Plant Form and Function
,
The University of Chicago Press
.
7.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
, New York:
Springer-Verlag
.
8.
Horgan
,
C. O.
, and
Saccomandi
,
G.
, 2005, “
A New Constitutive Theory for Fiber-Reinforced Incompressible Nonlinearly Elastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1985
2015
.
9.
Kerstens
,
S.
, and
Verbelen
,
J. P.
, 2002, “
Cellulose Orientation in the Outer Epidermal Wall of Angiosperm Roots: Implications for Biosystematics
,”
Ann. Bot. (London)
0305-7364,
90
, pp.
669
676
.
10.
Berge
,
H.
,
Spatz
,
H. C.
,
Speck
,
T.
, and
Neinhuis
,
C.
, 2004, “
Two-dimensional Tension Tests in Plant Biomechanics–Sweet Cherry Fruit Skin as a Model System
,”
Plant Biol. (Stuttg)
,
6
(
4
), pp.
432
439
.
11.
Blahovec
,
J.
, 1996, “
Stress Relaxation in Cherry Fruit
,”
Biorheology
0006-355X,
33
(
6
), pp.
451
462
.
12.
Amundsen
,
B. H.
,
Helle-Valle
,
T.
,
Edvardsen
,
T.
,
Torp
,
H.
,
Crosby
,
J.
,
Lyseggen
,
E.
,
Stoylen
,
A.
,
Ihlen
,
H.
,
Lima
,
J. A.
,
Smiseth
,
O. A.
, and
Slordahl
,
S. A.
, 2006, “
Noninvasive Myocardial Strain Measurement by Speckle Tracking Echocardiography: Validation Against Sonomicrometry and Tagged Magnetic Resonance Imaging
,”
J. Am. Coll. Cardiol.
0735-1097
47
(
4
), pp.
789
793
.
13.
Rodriguez
,
I.
,
Ennis
,
D. B.
, and
Wen
,
H.
, 2006, “
Noninvasive Measurement of Myocardial Tissue Volume Change During Systolic Contraction and Diastolic Relaxation in the Canine Left Ventricle
,”
Magn. Reson. Med.
0740-3194,
55
(
3
), pp.
484
490
.
14.
Barzin
,
A.
,
Sheets
,
C. G.
, and
Earthman
,
J. C.
, 2002, “
Mechanical Biocompatibility of Dental Implant Materials
,”
Proceedings of the Fourth Pacific Rim, International Conference on Materials
,
Japanese Institute of Metals
, pp.
2492
2952
.
15.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1995, “
Determination of the Mechanical Properties of the Different Layers of Blood Vessels In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
92
(
6
), pp.
2169
2173
.
16.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2006, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
142
149
.
17.
Kerstens
,
S.
,
Decraemer
,
W. F.
, and
Verbelen
,
J. P.
, 2001, “
Cell Walls at the Plant Surface Behave Mechanically Like Fiber-Reinforced Composite Materials
,”
Plant Physiol.
0032-0889,
127
, pp.
381
385
.
18.
Sharpe
,
J.
, 2004, “
Optical Projection Tomography
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
209
228
.
19.
Verbelen
,
J. P.
, and
Kerstens
,
S.
, 2000, “
Polarization Confocal Microscopy and Congo Red Fluorescence: A Simple and Rapid Method to Determine the Mean Cellulose Fibril Orientation in Plants
,”
J. Microsc.
0022-2720,
198
(
2
), pp.
101
107
.
20.
Sugimoto
,
K.
,
Williamson
,
R. E.
, and
Wasteneys
,
G. O.
, 2000, “
New Techniques Enable Comparative Analysis of Microtubule Orientation, Wall Texture, and Growth Rate in Intact Roots of Arabidopsis
,”
Plant Physiol.
0032-0889,
124
(
4
), pp.
1493
1506
.
21.
Shimazaki
,
Y.
,
Ookawa
,
T.
, and
Hirasawa
,
T.
, 2005, “
The Root Tip and Accelerating Region Suppress Elongation of the Decelerating Region without any Effects on Cell Turgor in Primary Roots of Maize under Water Stress
,”
Plant Physiol.
0032-0889,
139
, pp.
458
465
.
22.
Verbelen
,
J. P.
,
Vissenberg
,
K.
,
Kerstens
,
S.
, and
Le
,
J.
, 2001, “
Cell Expansion in the Epidermis: Microtubules, Cellulose, Orientation and Wall loosening Enzymes
,”
Journal of Plant Physiology
,
158
(
5
), pp.
537
543
.
23.
Spencer
,
A. J. M.
, 2004,
Continuum Mechanics
,
Dover
.
24.
Kaku
,
T.
,
Tabuchi
,
A.
,
Wakabayashi
,
K.
,
Kamisaka
,
S.
, and
Hoson
,
T.
, 2002, “
Action of Xyloglucan Hydrolase within the Native Cell Wall Architecture and Its Effect on Cell Wall Extensibility in Azuki Bean Epicotyls
,”
Plant Cell Physiol.
0032-0781,
43
(
1
), pp.
21
26
.
25.
Yuan
,
S.
,
Wu
,
Y.
, and
Cosgrove
,
D. J.
, 2001, “
A Fungal Endoglucanase with Plant Cell Wall Extension Activity
,”
Plant Physiol.
0032-0889,
127
(
1
), pp.
324
333
.
You do not currently have access to this content.