The response of metal matrix composites is affected by factors such as inclusion distribution and shape, inclusion/matrix interfacial bond, residual stresses, and fabrication-altered in situ matrix properties. These effects are studied using a finite-volume micromechanics model whose extensive modeling capabilities are sufficient to account for these diverse factors. A consistent micromechanics-aided methodology is developed for extracting the unknown in situ matrix plastic parameters using a minimum amount of experimental data. Subsequent correlation of the micromechanics-based predictions with carefully generated data on off-axis response of unidirectional boron/aluminum composite specimens under tensile and compressive axial loading validates the model’s predictive capability and quantifies the importance of each factor.

1.
Clyne
,
T. W.
, and
Withers
,
P. J.
, 1993,
An Introduction to Metal Matrix Composites
,
University Press
, Cambridge, UK.
2.
Steglich
,
D.
, and
Brocks
,
W.
, 1997, “
Micromechanical Modeling of the Behavior of Ductile Materials Including Particles
,”
Comput. Mater. Sci.
0927-0256,
9
, pp.
7
17
.
3.
Llorca
,
J.
, and
Gonzales
,
C.
, 1998, “
Microstructural Factors Controlling the Strength and Ductility of Particle Reinforced Metal-Matrix Composites
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1
28
.
4.
Ghosh
,
S.
, and
Moorthy
,
S.
, 1998, “
Particle Fracture Simulation in Nonuniform Microstructures of Metal-Matrix Composites
,”
Acta Mater.
1359-6454,
46
(
3
), pp.
965
982
.
5.
Doghri
,
I.
, and
Quaar
,
A.
, 2003, “
Homogenization of Two-Phase Elasto-Plastic Composite Materials and Structures—Study of Tangent Operators, Cyclic Plasticity and Numerical Algorithms
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
1681
1712
.
6.
Silva
,
N.
, and
Velhinho
,
A.
, 2006, “
Assessment of Particle Clustering in MMCs by Quantitative Image Analysis
,”
Mater. Sci. Forum
0255-5476,
514–516
, pp.
779
783
.
7.
Goh
,
C. S.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
, 2006, “
Effect of Fabrication Techniques on the Properties of Carbon Nanotubes Reinforced Magnesium
,”
Solid State Phenom.
1012-0394,
111
, pp.
179
182
.
8.
Dorner-Reisel
,
A.
,
Nishida
,
Y.
,
Klemm
,
V.
,
Nestler
,
K.
,
Marx
,
G.
, and
Müller
,
E.
, 2002, “
Investigation of Interfacial Interaction Between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91
,”
Anal. Bioanal. Chem.
1618-2642,
374
, pp.
635
638
.
9.
Moorthy
,
S.
, and
Ghosh
,
S.
, 2000, “
Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
185
, pp.
37
74
.
10.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multiscale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
0020-7683,
38
(
14
), pp.
2335
2385
.
11.
Chaboche
,
J. L.
,
Kanouté
,
P.
, and
Roos
,
A.
, 2005, “
On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
21
(
7
), pp.
1409
1434
.
12.
Doghri
,
I.
, and
Tinel
,
L.
, 2005, “
Micromechanical Modeling and Computation of Elastic-Plastic Materials Reinforced With Distributed-Orientation Fibers
,”
Int. J. Plasticity
,
21
(
10
), pp.
1919
1940
.
13.
Ma
,
H.
, and
Gengkai Hu
,
G.
, 2006, “
Influence of Fiber’s Shape and Size on Overall Elastoplastic Property for Micropolar Composites
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3025
3043
.
14.
Zhou
,
F. H.
,
Hashimoto
,
R.
,
Ogawa
,
A.
, and
Sofue
,
Y.
, 2006, “
Residual Stress and Its Effect on Yielding in SiC∕Ti Plate
,”
JSME Int. J., Ser. A
1340-8046,
49
(
1
), pp.
25
31
.
15.
Okabe
,
T.
,
Nishikawa
,
M.
,
Takeda
,
N.
, and
Sekine
,
H.
, 2006, “
Effect of Matrix Hardening on the Tensile Strength of Alumina Fiber-Reinforced Aluminum Matrix Composites
,”
Acta Mater.
1359-6454,
54
, pp.
2557
2566
.
16.
Brockenbrough
,
J. R.
, and
Suresh
,
S.
, 1990, “
Plastic Deformation of Continuous Fiber-Reinforced Metal-Matrix Composites: Effects of Fiber Shape and Distribution
,”
Scr. Metall. Mater.
0956-716X,
24
, pp.
325
330
.
17.
Brockenbrough
,
J. R.
,
Suresh
,
S.
, and
Wienecke
,
H. A.
, 1991, “
Deformation of Metal Matrix Composites With Continuous Fibers: Geometric Effects of Fiber Distribution and Shape
,”
Acta Metall. Mater.
0956-7151,
39
(
5
), pp.
735
752
.
18.
Arnold
,
S. M.
,
Pindera
,
M-J.
, and
Wilt
,
T. E.
, 1996, “
Influence of Fiber Architecture on the Inelastic Response of Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
12
(
4
), pp.
507
545
.
19.
Corbin
,
S. F.
, and
Wilkinson
,
D. S.
, 1994, “
The Influence of Particle Distribution on the Mechanical Response of a Particulate Metal Matrix Composite
,”
Acta Metall. Mater.
0956-7151,
42
(
4
), pp.
1311
1318
.
20.
Conlon
,
K. T.
, and
Wilkinson
,
D. S.
, 2001, “
Effect of Particle Distribution on Deformation and Damage of Two-Phase Alloys
,”
Mater. Sci. Eng., A
0921-5093,
317
, pp.
108
114
.
21.
Johnson
,
W. S.
,
Lubowinski
,
S. J.
, and
Highsmith
,
A. L.
, 1990, “
Mechanical Characterization of Unnotched SCS6/Ti-15-3 Metal Matrix Composites at Room Temperature
,” in:
Thermal and Mechanical Behaviour of Metal Matrix and Ceramic Matrix Composites
, ASTM STP 1080,
J. M.
Kennedy
,
H. H.
Moeller
, and
W. S.
Johnson
, eds.,
American Society for Testing and Materials
, Philadelphia, pp.
193
218
.
22.
Goda
,
K.
, 2002, “
Creep-Rupture Lifetime Simulation of Unidirectional Metal Matrix Composites With and Without Time-Dependent Fiber Breakage
,”
Int. J. Plast.
0749-6419,
18
, pp.
1729
1748
.
23.
Ohno
,
N.
, and
Miyakeb
,
T.
, 1999, “
Stress Relaxation in Broken Fibers in Unidirectional Composites: Modeling and Application to Creep Rupture Analysis
,”
Int. J. Plast.
0749-6419,
15
, pp.
167
189
.
24.
Aboudi
,
J.
,
Pindera
,
M-J.
, and
Arnold
,
S. M.
, 2001, “
Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
68
(
5
), pp.
697
707
.
25.
Aboudi
,
J.
,
Pindera
,
M-J.
, and
Arnold
,
S. M.
, 2003, “
Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,
Int. J. Plast.
0749-6419,
19
(
6
), pp.
805
847
.
26.
Bansal
,
Y.
, and
Pindera
,
M-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
;
see also: NASA CR2004-213043.
27.
Bansal
,
Y.
, and
Pindera
,
M-J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
0749-6419,
22
(
5
), pp.
775
825
.
28.
Bufler
,
H.
, 1971, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
0374-3535,
1
, pp.
125
143
.
29.
Pindera
,
M-J.
, 1991, “
Local/Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Composites Eng.
0961-9526,
1
(
2
), pp.
69
83
.
30.
Becker
,
W.
,
Pindera
,
M-J.
, and
Herakovich
,
C. T.
, 1987, “
Mechanical Response of Unidirectional Boron/Aluminum Under Combined Loading
,” CCMS-87-06, VPI-E-87–17, Center for Composite Materials and Structures, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
31.
Pindera
,
M-J.
, and
Herakovich
,
C. T.
, 1986, “
Shear Characterization of Unidirectional Composites With the Off-Axis Tension Test
,”
Exp. Mech.
0014-4851,
26
(
1
), pp.
103
112
.
32.
Pindera
,
M-J.
,
Choksi
,
G. N.
,
Hidde
,
J. S.
, and
Herakovich
,
C. T.
, 1987, “
A Methodology for Accurate Shear Characterization of Unidirectional Composites
,”
J. Compos. Mater.
0021-9983,
21
(
12
), pp.
1164
1184
.
33.
Pindera
,
M-J.
, 1989,
Shear Testing of Fiber Reinforced Metal Matrix Composites, in Metal Matrix Composites: Testing, Analysis and Failure Modes
, ASTM STP 1032,
W. S.
Johnson
, ed.,
American Society for Testing and Materials
, Philadelphia, pp.
19
42
.
34.
Aghdam
,
M. M.
,
Pavier
,
M. J.
, and
Smith
,
D. J.
, 2001, “
Micromechanics of Off-Axis Loading of Metal Matrix Composites Using Finite Element Analysis
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3905
3925
.
35.
Paley
,
M.
, and
Aboudi
,
J.
, 1992, “
Micromechanical Analysis of Composites by the Generalized Method of Cells
,”
Mech. Mater.
0167-6636,
14
, pp.
127
139
.
36.
Williams
,
T. O.
, 2005, “
A Two-Dimensional, Higher-Order, Elasticity-Based Micromechanics Model
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
1009
1038
.
37.
Achenbach
,
J. D.
, 1975,
A Theory of Elasticity With Microstructure for Directionally Reinforced Composites
,
Springer-Verlag
, New York.
38.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
39.
Mendelson
,
A.
, 1986,
Plasticity: Theory and Application
,
Krieger Publishing Co.
, Malabar, FL (reprint edition).
40.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis, Part II: Numerical Results
,”
J. Applied Mechanics
, in press.
41.
Dvorak
,
G. J.
, 1992, “
Transformation Field Analysis of Inelastic Composite Materials
,”
Proc. R. Soc. London, Ser. A
1364-5021,
431
, pp.
89
110
.
42.
Herakovich
,
C. T.
, 1998, “
Mechanics of Fibrous Composites
,”
John Wiley & Sons, Inc.
, New York.
43.
Williams
,
T. O.
, and
Pindera
,
M-J.
, 1997, “
An Analytical Model for the Inelastic Axial Shear Response of Unidirectional Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
13
(
3
), pp.
261
289
.
44.
Voyiadjis
,
G. Z.
, and
Guelzim
,
Z.
, 1996, “
A Coupled Incremental Damage and Plasticity Theory for Metal Matrix Composites
,”
J. Mech. Behav. Mater.
0334-8938,
6
, pp.
193
219
.
45.
Pindera
,
M-J.
, and
Lin
,
M. W.
, 1989, “
Micromechanical Analysis of the Elastoplastic Response of Metal Matrix Composites
,”
ASME J. Pressure Vessel Technol.
0094-9930,
111
(
2
), pp.
183
190
.
46.
Pindera
,
M-J.
,
Herakovich
,
C. T.
,
Becker
,
W.
, and
Aboudi
,
J.
, 1990, “
Nonlinear Response of Unidirectional Boron/Aluminum
,”
J. Compos. Mater.
0021-9983,
24
(
1
), pp.
2
21
.
47.
Aboudi
,
J.
, 1991,
Mechanics of Composite Materials—A Unified Micromechanical Approach
,
Elsevier
, Amsterdam.
48.
Pindera
,
M-J.
, and
Freed
,
A. D.
, 1994, “
The Effect of Matrix Microstructure on Thermally-Induced Residual Stresses in SiC/Titanium Aluminide Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
116
(
2
), pp.
215
221
.
49.
Kontou
,
E.
, and
Spathis
,
G.
, 2006, “
Application of Finite Strain Viscoplasticity to Polymeric Fiber Composites
,”
Int. J. Plast.
0749-6419,
22
(
7
), pp.
1287
1303
.
You do not currently have access to this content.