Combustion synthesis (CS) is an alternative technique for producing advanced materials and is dependent upon a highly exothermic chemical reaction to become self-sustaining after only a short energy pulse is applied to initiate the reaction. A NiTi-TiCx functionally graded material (FGM) was investigated that combines superelastic and shape memory capabilities of NiTi with the high hardness, wear, and corrosion resistance of TiCx. CS was employed to produce a FGM from 100% TiCx ceramic to 100% NiTi intermetallic. Temperature and burning velocity data of the CS reaction were recorded. XRD of the final product layers was conducted to determine phase composition. The combustion temperature, burning velocity, and cooling rate in each layer decreased with increasing NiTi content. Large blowholes were present in the high NiTi content layers as a result of outgassing of volatile species from the reactant powders. XRD analysis revealed the presence of Ni-Ti intermetallics along with a substoichiometric TiC (TiC0.7). Production of a NiTi-TiCx FGM is possible through use of a CS reaction employing the propagating mode (SHS). The material layers were observed as functionally graded in both composition and porosity.

1.
Ye
,
H. Z.
,
Liu
,
R.
,
Li
,
D. Y.
, and
Eadie
,
R.
, 1999, “
Development of a New Wear-Resistant Material: TiC∕TiNi Composite
,”
Scr. Mater.
1359-6462,
41
(
10
), pp.
1039
1045
.
2.
Chin
,
E. S. C.
, 1999, “
Army Focused Research Team on Functionally Graded Armor Composites
,”
Mater. Sci. Eng., A
0921-5093,
259
, pp.
155
161
.
3.
Tan
,
G. E. B.
, and
He
,
Z.
, 2002, “
Fabrication and Characterization of Ti-TiB2 Functionally Graded Material System
,”
Metall. Mater. Trans. A
1073-5623,
33A
(
3
), pp.
681
685
.
4.
YongMing
,
L.
,
ShuQin
,
L.
,
Jian
,
C.
,
RuiGang
,
W.
,
JianQiang
,
L.
, and
Wei
,
P.
, 2003, “
Preparation and Characterization of Al2O3-Ti3SiC2 Composites and Its Functionally Graded Materials
,”
Mater. Res. Bull.
0025-5408,
38
(
1
), pp.
69
78
.
5.
Put
,
S.
,
Vleugels
,
J.
,
Anne
,
G.
, and
Van der Biest
,
O.
, 2003, “
Functionally Graded Ceramic and Ceramic-Metal Composites Shaped by Electrophoretic Deposition
,”
Colloids Surf., A
0927-7757,
222
(
1
), pp.
223
232
.
6.
Put
,
S.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
, 2003, “
Gradient Profile Prediction in Functionally Graded Materials Processed by Electrophoretic Deposition
,”
Acta Mater.
1359-6454,
51
(
20
), pp.
6303
6317
.
7.
Tabellion
,
J.
, and
Clasen
,
R.
, 2004, “
Electrophoretic Deposition From Aqueous Suspensions for Near-Shape Manufacturing of Advanced Ceramics and Glasses—Applications
,”
J. Mater. Sci.
0022-2461,
39
(
3
), pp.
803
811
.
8.
Nagarajan
,
N.
, and
Nicholson
,
P. S.
, 2004, “
Nickel-Alumina Functionally Graded Materials by Electrophoretic Deposition
,”
J. Am. Ceram. Soc.
0002-7820,
87
(
11
), pp.
2053
2057
.
9.
Fukui
,
Y.
,
Okada
,
H.
,
Kumazawa
,
N.
, and
Watanabe
,
Y.
, 2000, “
Near-Net-Shape Forming of Al-Al3Ni Functionally Graded Material over Eutectic Melting Temperature
,”
Metall. Mater. Trans. A
1073-5623,
31A
(
10
), pp.
2627
2636
.
10.
Sarraute
,
S.
,
Sorensen
,
O. T.
, and
Hansen
,
E. R.
, 1998, “
Fabrication Process for Barium Titanate-Ferrite Functionally Graded Ceramics
,”
J. Eur. Ceram. Soc.
0955-2219,
18
(
7
), pp.
759
764
.
11.
Ruigang
,
W.
,
Wei
,
P.
,
Jian
,
C.
,
Mengning
,
J.
, and
Minghao
,
F.
, 2002, “
Fabrication and Characterization of Machinable Si3N4/h-BN Functionally Graded Materials
,”
Mater. Res. Bull.
0025-5408,
37
(
7
), pp.
1269
1277
.
12.
Nunogaki
,
M.
,
Inoue
,
M.
, and
Yamamoto
,
T.
, 2002, “
Ceramic Layers Formed on Metals by Reactive Plasma Processing
,”
J. Eur. Ceram. Soc.
0955-2219,
22
(
14
), pp.
2537
2541
.
13.
Munir
,
Z. A.
, and
Anselmi-Tamburini
,
U.
, 1989,
Mater. Sci. Rep.
0920-2307,
3
, pp.
227
365
.
14.
Merzhanov
,
A. G.
, 1990,
Combustion and Plasma Synthesis of High-Temperature Materials
,
VCH Publishers
,
New York
, p.
1
.
15.
Cirakoglu
,
M.
,
Bhaduri
,
S.
, and
Bhaduri
,
S. B.
, 2002, “
Combustion Synthesis Processing of Functionally Graded Materials in the Ti-B System
,”
J. Alloys Compd.
0925-8388,
347
, pp.
259
265
.
16.
Munir
,
Z. A.
, 1988, “
Synthesis of High Temperature Materials by Self-Propagating Combustion Methods
,”
Ceram. Bull.
0002-7812,
67
(
2
), pp.
342
349
.
17.
Moore
,
J. J.
, and
Feng
,
H.
, 1995, “
Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters
,”
Prog. Mater. Sci.
0079-6425,
39
, pp.
243
273
.
18.
Zhang
,
X.-H.
,
Han
,
J.-C.
,
Du
,
S.-Y.
, and
Wood
,
J. V.
, 2000, “
Microstructure and Mechanical Properties of TiC–Ni Functionally Graded Materials by Simultaneous Combustion Synthesis and Compaction
,”
J. Mater. Sci.
0022-2461,
35
, pp.
1925
1930
.
19.
Kim
,
J. H.
,
Kim
,
M. C.
, and
Park
,
C. G.
, 2003, “
Evaluation of Functionally Graded Thermal Barrier Coatings Fabricated by Detonation Gun Spray Technique
,”
Surf. Coat. Technol.
0257-8972,
168
(
2
), pp.
275
280
.
20.
Khor
,
K. A.
, and
Gu
,
Y. W.
, 2000, “
Thermal Properties of Plasma-Sprayed Functionally Graded Thermal Barrier Coatings
,”
Thin Solid Films
0040-6090,
372
(
1
), pp.
104
113
.
21.
Navarro
,
A.
,
Whatmore
,
R.
, and
Alcock
,
J.
, 2004, “
Preparation of Functionally Graded PZT Ceramics Using Tape Casting
,”
J. Electroceram.
1385-3449,
13
(
1–3
), pp.
413
415
.
22.
Steinhausen
,
R.
,
Kouvatov
,
A.
,
Pientschke
,
C.
,
Langhammer
,
H.
,
Seifert
,
W.
,
Beige
,
H.
, and
Abicht
,
H.
, 2004, “
AC-Poling of Functionally Graded Piezoelectric Bending Devices
,”
Integr. Ferroelectr.
1058-4587,
63
(
1
), pp.
15
20
.
23.
Guo
,
H.
,
Khor
,
K. A.
,
Boey
,
Y. C.
, and
Miao
,
X.
, 2003, “
Laminated and Functionally Graded Hydroxyapatite/Yttria Stabilized Tetragonal Zirconia Composites Fabricated by Spark Plasma Sintering
,”
Biomaterials
0142-9612,
24
(
4
), pp.
667
675
.
24.
Werner
,
J.
,
Linner-Krcmar
,
B.
,
Friess
,
W.
, and
Greil
,
P.
, 2002, “
Mechanical Properties and In Vitro Cell Compatibility of Hydroxyapatite Ceramics With Graded Pore Structure
,”
Biomaterials
0142-9612,
23
(
21
), pp.
4285
4294
.
25.
Manjubala
,
I.
, and
Sampath Kumar
,
T. S.
, 2000, “
Effect of TiO2-Ag2O Additives on the Formation of Calcium Phosphate Based Functionally Graded Bioceramics
,”
Biomaterials
0142-9612,
21
(
19
), pp.
1995
2002
.
26.
Castillo
,
M.
,
Moore
,
J. J.
,
Schowengerdt
,
F. D.
,
Ayers
,
R. A.
,
Zhang
,
X.
,
Umakoshi
,
M.
,
Yi
,
H. C.
, and
Guigne
,
J. Y.
, 2003, “
Effects of Gravity on Combustion Synthesis of Functionally Graded Biomaterials
,”
Adv. Space Res.
0273-1177,
32
(
2
), pp.
265
270
.
27.
Rosario
,
V. M.
,
Chaturvedi
,
M. C.
,
Kipouros
,
G. J.
, and
Caley
,
W. F.
, 1999, “
Development of a Thermal Barrier Material Using Combustion Synthesis
,”
Mater. Sci. Eng., A
0921-5093,
270
, pp.
283
290
.
28.
Ma
,
X.
,
Tanihata
,
K.
, and
Miyamoto
,
Y.
, 1992, “
Fabrication of TiC∕Ni Functionally Gradient Materials and Their Mechanical and Thermal Properties
,”
Ceram. Eng. Sci. Proc.
0196-6219,
13
(
6
), pp.
356
364
.
29.
Zhang
,
X.-H.
,
Han
,
J.-C.
,
He
,
X.-D.
, and
Kvanin
,
V. L.
, 2000, “
Combustion Synthesis and Thermal Stress Analysis of TiC–Ni Functionally Graded Materials
,”
J. Mater. Synth. Process.
1064-7562,
8
(
1
), pp.
29
34
.
30.
Padmavardhani
,
D.
,
Gomez
,
A.
, and
Abbaschian
,
R.
, 1998, “
Synthesis and Microstructural Characterization of NiAl-Al2O3 Functionally Gradient Composites
,”
Intermetallics
0966-9795,
6
(
4
), pp.
229
241
.
31.
Burkes
,
D. E.
,
Gottoli
,
G.
,
Moore
,
J. J.
, and
Yi
,
H. C.
, 2006, “
Production of Ni3Ti-TiCx Intermetallic-Ceramic Composites Employing Combustion Synthesis Reactions
,”
Metall. Mater. Trans. A
1073-5623,
37
(
3
), pp.
1045
1053
.
32.
Dunmead
,
S. D.
,
Readey
,
D. W.
, and
Semler
,
C. E.
, 1989, “
Kinetics of Combustion Synthesis in the Ti–C and Ti–C–Ni Systems
,”
J. Am. Ceram. Soc.
0002-7820,
72
(
12
), pp.
2318
2324
.
33.
van Loo
,
F. J. J.
, and
Bastin
,
G. F.
, 1989, “
On the Diffusion of Carbon in Titanium Carbide
,”
Metall. Mater. Trans. A
1073-5623,
20A
, pp.
403
411
.
34.
Reed-Hill
,
R. E.
, and
Abbaschian
,
R.
, 1994,
Physical Metallurgy Principles
, 3rd ed.,
PWS Publishing Company
.
35.
Choi
,
Y.
, and
Rhee
,
S.-W.
, 1994, “
Equilibrium in the Reaction of Ti and C to Form Substoichiometric TiCx
,”
J. Mater. Sci. Lett.
0261-8028,
13
, pp.
323
325
.
36.
Burkes
,
D. E.
, and
Moore
,
J. J.
, 2006, “
Kinetics, Microstructure and Mechanical Properties of a Functionally Graded NiTi-TiCx Composite Produced by Combustion Synthesis
,”
J. Alloys Compd.
0925-8388, in press.
37.
Rice
,
R. W.
, and
McDonough
,
W. J.
, 1985, “
Intrinsic Volume Changes of Self-Propagating Synthesis
,”
J. Am. Ceram. Soc.
0002-7820,
68
(
5
), pp.
C
-122–
123
.
38.
German
,
R. M.
, 1989,
Particle Packing Characteristics
,
Metal Powder Industries Federation
,
New Jersey
.
39.
Wakeman
,
R. J.
, 1975, “
Packing Densities of Particles with Log-Normal Size Distributions
,”
Powder Technol.
0032-5910,
11
(
3
), pp.
297
299
.
40.
Kirdyashkin
,
A. I.
,
Maksimov
,
Yu. M.
, and
Merzhanov
,
A. G.
, 1981, “
Effects of Capillary Flow on Combustion in a Gas-Free System
,”
Fiz. Goreniya Vzryva
0430-6228,
17
(
6
), pp.
10
15
.
41.
Shkiro
,
V. M.
, and
Borovinskaya
,
I. P.
, 1976, “
Capillary Flow of Liquid Metal During Combustion of Titanium Mixtures with Carbon
,”
Fiz. Goreniya Vzryva
0430-6228,
12
(
6
), pp.
945
948
.
42.
Shcherbakov
,
V. A.
, and
Merzhanov
,
A. G.
, 1998, “
Structure Formation in Porous Materials Produced by Gravity-Sensitive SHS
,”
Combust. Sci. Technol.
0010-2202,
136
, pp.
253
277
.
43.
Ponomarev
,
M. A.
,
Sapronov
,
Yu. A.
, and
Shteinberg
,
A. S.
, 1996, “
Experimental Estimation of Impurity-Gas Pressure During Condensed-System Combustion in a Cylindrical Shell
,”
Combust., Explos. Shock Waves
0010-5082,
32
(
3
), pp.
286
290
.
44.
Burkes
,
D. E.
,
Yi
,
H. C.
,
Gottoli
,
G.
, and
Moore
,
J. J.
, 2006, “
Effects of Calcium Nitride and Calcium Carbonate Gasifying Agents on the Combustion Synthesis of Ni3Ti-TiC Composites
,”
J. Mater. Sci.
0022-2461,
41
, pp.
2009
2017
.
45.
Chrysanthou
,
A.
, and
Kasim
,
K. H.
, 1995, “
Observation of Intermetallic Ni3Ti Whiskers During Combustion Synthesis Reactions in the Ni–Ti–C System
,”
Scr. Metall. Mater.
0956-716X,
33
(
7
), pp.
1075
1079
.
46.
Torres
,
R. D.
,
Reimanis
,
I. E.
,
Moore
,
J. J.
, and
Mustoe
,
G. G. W.
, 2000, “
Reaction Steps in the Combustion Synthesis of NiAl∕TiB2 Composites
,”
Metall. Mater. Trans. B
1073-5615,
31B
, pp.
433
438
.
47.
Roine
,
A.
,
HSC Chemistry
,
Outokumpu Research Oy
,
Pori, Finland
, Vol.
5.11
.
You do not currently have access to this content.